1. Huang, Z., J. Fang, X. Liu, et al. "Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent-magnet electrical machines," IEEE Transactions on Industrial Electronics, Vol. 63, No. 4, 2027-2035, 2016. Google Scholar
2. Santra, T., D. Roy, A. B. Choudhury, and S. Yamada, "Vibration control of a hybrid magnetic bearing using an adaptive sliding mode technique," Journal of Vibration and Control, Vol. 24, No. 10, 1848-1860, 2018.
doi:10.1177/1077546317717884 Google Scholar
3. Santra, T., D. Roy, and A. B. Choudhury, "Calculation of passive magnetic force in a radial magnetic bearing using general division approach," Progress In Electromagnetics Research M, Vol. 54, 91-102, 2017.
doi:10.2528/PIERM16120602 Google Scholar
4. Han, B., S. Zheng, X. Wang, et al. "Integral design and analysis of passive magnetic bearing and active radial magnetic bearing for agile satellite application," IEEE Transactions on Magnetics, Vol. 48, No. 6, 1959-1966, 2012.
doi:10.1109/TMAG.2011.2180731 Google Scholar
5. Nguyen, T. D. and G. Foo, "Sensorless control of a dual-airgap axial flux permanent magnet machine for flywheel energy storage system," IET Electric Power Applications, Vol. 7, No. 2, 140-149, 2013.
doi:10.1049/iet-epa.2012.0048 Google Scholar
6. Han, B., S. Zheng, Y. Le, et al. "Modeling and analysis of coupling performance between passive magnetic bearing and hybrid magnetic radial bearing for magnetically suspended flywheel," IEEE Transactions on Magnetics, Vol. 49, No. 10, 5356-5370, 2013.
doi:10.1109/TMAG.2013.2263284 Google Scholar
7. Wang, X., D. Zhang, P. Gao, et al. "Structural optimization design of radial magnetic bearing for flywheel energy storage," Mechanical Science and Technology, Vol. 37, No. 7, 1048-1054, 2018. Google Scholar
8. Mitterhofer, H., W. Gruber, and W. Amrhein, "On the high speed capacity of bearingless drives," IEEE Transactions on Industrial Electronics, Vol. 61, No. 6, 3119-3126, 2014.
doi:10.1109/TIE.2013.2272281 Google Scholar
9. Moser, R., J. Sandtner, and H. Bleuler, "Optimization of repulsive passive magnetic bearings," IEEE Transactions on Magnetics, Vol. 42, No. 8, 2038-2042, 2006.
doi:10.1109/TMAG.2005.861160 Google Scholar
10. Zeisberger, M., T. Habisreuther, D. Litzkendorf, et al. "Optimization of levitation forces in superconducting magnetic bearings," IEEE Transactions on Applied Superconductivity, Vol. 11, No. 1, 1741-1744, 2001.
doi:10.1109/77.920120 Google Scholar
11. Sahinkaya, M. N. and A. E. Hartavi, "Variable bias current in magnetic bearings for energy optimization," IEEE Transactions on Magnetics, Vol. 43, No. 3, 1052-1060, 2007.
doi:10.1109/TMAG.2006.888731 Google Scholar
12. Lan, Z., X. Yang, F. Wang, et al. "Application for optimal designing of sinusoidal interior permanent magnet synchronous motor by using the Taguchi method," Transactions of China Electrotechnical Society, Vol. 26, No. 12, 37-42, 2011. Google Scholar
13. Rao, J. S. and R. Tiwari, "Optimum design and analysis of axial hybrid magnetic bearings using multi-objective genetic algorithms," International Journal for Computational Methods in Engineering Science & Mechanics, 10-27, 2012.
doi:10.1080/15502287.2011.636786 Google Scholar
14. Liu, X. and B. Han, "The multiobjective optimal design of a two-degree-of-freedom hybrid magnetic bearing," IEEE Transactions on Magnetics, Vol. 50, No. 9, 1-14, 2014.
doi:10.1109/TMAG.2014.2313315 Google Scholar
15. Han, B., Q. Xu, and Q. Yuan, "Multiobjective optimization of a combined radial-axial magnetic bearing for magnetically suspended compressor," IEEE Transactions on Industrial Electronics, Vol. 63, No. 4, 2284-2293, 2016. Google Scholar
16. Kennedy, J. and R. Eberhaa, "Particle swarm optimization," IEEE Int. Confon. Neural Networks, 1942-1948, IEEE, Perth, USA, 1995. Google Scholar
17. Zhang, Y., D. Gong, and Y. Jiang, "Barebones particle swarm for multi-objective optimization problems," International Journal of Innovative Computing & Applications, Vol. 2, No. 2, 86-99, 2009.
doi:10.1504/IJICA.2009.031779 Google Scholar
18. Trelea, I. C., "The particle swarm optimization algorithm: Convergence analysis and parameter selection," Information Processing Letters, Vol. 85, No. 6, 317-325, 2003.
doi:10.1016/S0020-0190(02)00447-7 Google Scholar
19. Eberhart, R. and J. Kennedy, "A new optimizer using particle swarm theory," Proceedings of the 16th International Symposium on Micro Machine and Human Science, 39-43, Nagoya, Japan, 1995. Google Scholar
20. Zhao, X., Z. Deng, and B. Wang, "Parameter design and realization of permanent magnet biased heterploar radial magnetic bearing," Transactions of China Electrotechnical Society, Vol. 27, No. 7, 131-138, 2012. Google Scholar
21. Zhu, H., Z. Deng, S. Yuan, et al. "The working principle and parameter design permanent magnet biased radial-axial direction magnetic bearing," Proceedings of the CSEE, Vol. 22, No. 9, 54-58, 2002. Google Scholar
22. Fang, J., C. Wang, and T. Wen, "Design and optimization of a radial hybrid magnetic bearing with separate poles for magnetically suspended inertially stabilized platform," IEEE Transactions on Magnetics, Vol. 50, No. 5, 1-11, 2014.
doi:10.1109/TMAG.2013.2293482 Google Scholar