1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., corr. reprinting, SciTech Pub., 2004.
2. Fan, T. and L. Guo, "OpenGL-based hybrid GO/PO computation for RCS of electrically large complex objects," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 666-669, 2014.
doi:10.1109/LAWP.2014.2352372 Google Scholar
3. Fan, T., L. Guo, B. Lv, and W. Liu, "An improved backward SBR-PO/PTD hybrid method for the backward scattering prediction of an electrically large target," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 512-515, 2016.
doi:10.1109/LAWP.2015.2456031 Google Scholar
4. Jin, K. S., T. I. Suh, S. H. Suk, B. C. Kim, and H. T. Kim, "Fast ray tracing using a space-division algorithm for RCS prediction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 119-126, 2006.
doi:10.1163/156939306775777341 Google Scholar
5. Algar, M., L. Lozano, J. Moreno, I. González, and F. Cátedra, "An efficient hybrid technique in RCS predictions of complex targets at high frequencies," Journal of Computational Physics, Vol. 345, 345-357, 2017.
doi:10.1016/j.jcp.2017.05.035 Google Scholar
6. Wu, B. and X. Sheng, "Application of asymptotic waveform evaluation to hybrid FE-BI-MLFMA for fast RCS computation over a frequency band," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2597-2604, 2013.
doi:10.1109/TAP.2013.2246532 Google Scholar
7. Antyufeyeva, M. S., A. Yu. Butrym, N. N. Kolchigin, M. N. Legenkiy, A. A. Maslovskiy, and G. G. Osinovy, "Specific RCS for describing the scattering characteristic of complex shape objects," Progress In Electromagnetics Research M, Vol. 52, 191-200, 2016.
doi:10.2528/PIERM16042907 Google Scholar
8. Taflove, A. and S. C. Hagness, "Finite-difference time-domain solution of Maxwell's Equations," Wiley Encyclopedia of Electrical and Electronics Engineering, 1-33, American Cancer Society, 2016. Google Scholar
9. Elsherbeni, A. Z. and V. Demir, The Finite-Difference Time-Domain Method for Electromagnetics with Matlab Simulations, 2nd Ed., SciTech, 2016.
10. Liu, J.-X., L. Ju, L.-H. Meng, Y.-J. Liu, Z.-G. Xu, and H.-W. Yang, "FDTD method for the scattered-field equation to calculate the radar cross-section of a three-dimensional target," Journal of Computational Electronics, Vol. 17, No. 3, 1013-1018, 2018.
doi:10.1007/s10825-018-1162-4 Google Scholar
11. Chen, W., L. Guo, J. Li, and S. Liu, "Research on the FDTD method of electromagnetic wave scattering characteristics in time-varying and spatially nonuniform plasma sheath," IEEE Transactions on Plasma Science, Vol. 44, No. 12, 3235-3242, 2016.
doi:10.1109/TPS.2016.2617680 Google Scholar
12. Panda, D. C., S. S. Pattnaik, S. Devi, and R. K. Mishra, "Application of FIR neural network on finite difference time domain technique to calculate input impedance of microstrip patch antenna," International Journal of RF and Microwave Computer Aided Engineering, Vol. 20, No. 2, 158-162, 2010. Google Scholar
13. Delgado, H. J. and M. H. Thursby, "A novel neural network combined with FDTD for the synthesis of a printed dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2231-2236, 2005.
doi:10.1109/TAP.2005.850706 Google Scholar
14. Mishra, R. K. and P. S. Hall, "NFDTD concept," IEEE Transactions on Neural Networks, Vol. 16, No. 2, 484-490, 2005.
doi:10.1109/TNN.2004.841799 Google Scholar
15. Siegelmann, H. T., B. G. Horne, and C. L. Giles, "Computational capabilities of recurrent NARX neural networks," IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics, Vol. 27, No. 2, 208-215, 1997.
doi:10.1109/3477.558801 Google Scholar
16. Zhu, Y. and Z. Q. Lang, "Design of nonlinear systems in the frequency domain: An output frequency response function-based approach," IEEE Transactions on Control Systems Technology, Vol. 26, No. 4, 1358-1371, 2018.
doi:10.1109/TCST.2017.2716379 Google Scholar
17. Zhao, W., H. Chen, and W. X. Zheng, "Recursive identification for nonlinear ARX systems based on stochastic approximation algorithm," IEEE Transactions on Automatic Control, Vol. 55, No. 6, 1287-1299, 2010.
doi:10.1109/TAC.2010.2042236 Google Scholar
18. Shirangi, M. G. and A. A. Emerick, "An improved TSVD-based Levenberg-Marquardt algorithm for history matching and comparison with Gauss-Newton," Journal of Petroleum Science and Engineering, Vol. 143, 258-271, 2016.
doi:10.1016/j.petrol.2016.02.026 Google Scholar
19. Wilamowski, B. M. and H. Yu, "Improved computation for Levenberg-Marquardt training," IEEE Transactions on Neural Networks, Vol. 21, No. 6, 930-937, 2010.
doi:10.1109/TNN.2010.2045657 Google Scholar
20. Martin, T., "An improved near- to far-zone transformation for the finite-difference time-domain method," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 9, 1263-1271, 1998.
doi:10.1109/8.719968 Google Scholar
21. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A Google Scholar
22. EM Software & Systems-S. A. (Pty) Ltd, Stellenbosh, South Africa "FEKO-a comprehensive electromagnetic simulation software tool. Suite 14.0,", http://www.feko.info, 2013. Google Scholar