1. Varshini, K. and T. Rama Rao, "Estimation of specific absorption rate using infrared thermography for the biocompatibility of wearable wireless devices," Progress In Electromagnetics Research, Vol. 56, 101-109, 2017. Google Scholar
2. Lahiri, B., S. Bagavathiappan, C. Soumya, T. Jayakumar, and J. Philip, "Infrared thermography based studies on mobile phone induced heating," Infrared Physics & Technology, Vol. 71, 242-251, 2015. Google Scholar
3. Repacholi, M. H., "Low-level exposure to radiofrequency electromagnetic fields: Health effects and research needs," Bioelectromagnetics: Journal of the Bioelectromagnetics Society, the Society for Physical Regulation in Biology and Medicine, the European Bioelectromagnetics Association, Vol. 19, No. 1, 1-19, 1998. Google Scholar
4. Zhang, M. and X. Wang, "Influence on SAR due to metallic frame of glasses based on high-resolution Chinese electromagnetic human model," 2010 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 48-51, IEEE, 2010. Google Scholar
5. Pizarro, Y., A. De Salles, S. Severo, J. Garzon, and S. Bueno, "Specific Absorption Rate (SAR) in the head of Google glasses and Bluetooth user’s," 2014 IEEE Latin-America Conference on Communications (LATINCOM), 1-6, IEEE, 2014. Google Scholar
6. Bellanca, G., G. Caniato, A. Giovannelli, P. Olivo, S. J. M. Trillo, and O. T. Letters, "Effect of field enhancement due to the coupling between a cellular phone and metallic eyeglasses," Microwave & Optical Technology Letters, Vol. 48, No. 1, 63-65, 2006. Google Scholar
7. Cihangir, A., et al., "Dual-band 4G eyewear antenna and SAR implications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2085-2089, 2017. Google Scholar
8. Cihangir, A., C. J. Panagamuwa, W. G. Whittow, F. Gianesello, C. J. I. A. Luxey, and W. P. Letters, "Ultra-broadband antenna with robustness to body detuning for 4G eyewear devices," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1225-1228, 2017. Google Scholar
9. Cihangir, A., W. Whittow, C. Panagamuwa, G. Jacquemod, F. Gianesello, and C. J. C. R. P. Luxey, "4G antennas for wireless eyewear devices and related SAR," Comptes Rendus Physique, Vol. 16, No. 9, 836-850, 2015. Google Scholar
10. Cihangir, A., et al., "Feasibility study of 4G cellular antennas for eyewear communicating devices," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1704-1707, 2013. Google Scholar
11. Lan, J., X. Liang, T. Hong, G. J. P. I. b. Du, and M. Biology, "On the effects of glasses on the SAR in human head resulting from wireless eyewear devices at phone call state," Progress in Biophysics and Molecular Biology, Vol. 136, 29-36, August 2018. Google Scholar
12. Tikhomirov, A., E. Omelyanchuk, and A. Semenova, "Recommended 5G frequency bands evaluation," 2018 Systems of Signals Generating and Processing in the Field of on Board Communications, 2018. Google Scholar
13. Letavin, D. A. and D. A. Trifonov, "Simulation of 3600–3800 MHz frequency band antenna for fifth generation mobile communication," 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 291-294, IEEE, 2018. Google Scholar
14. Qamar, F., M. H. S. Siddiqui, K. Dimyati, K. A. B. Noordin, and M. B. Majed, "Channel characterization of 28 and 38GHz MM-wave frequency band spectrum for the future 5G network," 2017 IEEE 15th Student Conference on Research and Development (SCOReD), 291-296, IEEE, 2017. Google Scholar
15. Pandit, S., A. Mohan, and P. J. I. S. L. Ray, "Compact frequency-reconfigurable MIMO antenna for microwave sensing applications in WLAN and WiMAX frequency bands," IEEE Sensors Letters, Vol. 2, No. 2, 1-4, 2018. Google Scholar
16. Karthik, V. and T. R. Rao, "Investigations on SAR and thermal effects of a body wearable microstrip antenna," Wireless Personal Communications, Vol. 96, No. 3, 3385-3401, 2017. Google Scholar
17. Varshini, K. and T. Rama Rao, "Thermal distribution based investigations on electromagnetic interactions with the human body for wearable wireless devices," Progress In Electromagnetics Research M, Vol. 50, 141-150, 2016. Google Scholar
18. Brishoual, M., C. Dale, J. Wiart, and J. Citerne, "Methodology to interpolate and extrapolate SAR measurements in a volume in dosimetric experiment," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 3, 382-389, 2001. Google Scholar
19. Chavannes, N., R. Tay, N. Nikoloski, and N. Kuster, "RF design of mobile phones by TCAD: Suitability and limitations of FDTD," IEEE Antennas Propagation Mag., Vol. 45, 52-66, 2003. Google Scholar
20. Mobashsher, A. T. and A. M. Abbosh, "Artificial human phantoms: Human proxy in testing microwave apparatuses that have electromagnetic interaction with the human body," IEEE Microwave Magazine, Vol. 16, No. 6, 42-62, 2015. Google Scholar
21. Bakar, A. A., A. Abbosh, P. Sharpe, and M. Bialkowski, "Artificial breast phantom for microwave imaging modality," 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 385-388, IEEE, 2010. Google Scholar
22. Islam, M. T., M. Samsuzzaman, S. Kibria, and M. T. Islam, "Experimental breast phantoms for estimation of breast tumor using microwave imaging systems," IEEE Access, Vol. 6, 78587-78597, 2018. Google Scholar
23. Duan, Q., et al., "Characterization of a dielectric phantom for high-field magnetic resonance imaging applications," Medical Physics, Vol. 41, No. 10, 102303, 2014. Google Scholar
24. Soler Gonzalez, F., "Radiation effects of wearable antenna in human body tissues," EEE Student Reports (FYP/IA/PA/PI), 2014. Google Scholar
25. Castello-Palacios, S., C. Garcia-Pardo, A. Fornes-Leal, N. Cardona, and A. Valles-Lluch, "Wideband phantoms of different body tissues for heterogeneous models in body area networks," 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3032-3035, IEEE, 2017. Google Scholar
26. Castello-Palacios, S., C. Garcia-Pardo, A. Fornes-Leal, N. Cardona, and A. Valles-Lluch, "Tailor-made tissue phantoms based on acetonitrile solutions for microwave applications up to 18 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, 3987-3994, 2016. Google Scholar
27. Destruel, A., et al., "A numerical and experimental study of RF shimming in the presence of hip prostheses using adaptive SAR at 3 T," Magnetic Resonance in Medicine, 2019. Google Scholar
28. Simba, A., S. Watanabe, T. Hikage, and T. Nojima, "Experimental and numerical investigation of the maximum specific absorption rate in a spherical phantom when operating a mobile phone near a metallic wall," IET Science, Measurement & Technology, Vol. 5, No. 6, 225-230, 2011. Google Scholar
29. Abdelsamie, M. A., S. Mustafa, M. Isa, and D. Hashim, "Evaluation of electric and magnetic fields distribution and SAR induced in 3D models of water containers by radiofrequency radiation and their relationship to the non-thermal effects of microwaves,", arXiv preprint arXiv:1410.2147, 2014. Google Scholar
30. Wessapan, T., S. Srisawatdhisukul, and P. Rattanadecho, "Specific absorption rate and temperature distributions in human head subjected to mobile phone radiation at different frequencies," International Journal of Heat and Mass Transfer, Vol. 55, No. 1–3, 347-359, 2012. Google Scholar
31. Hamada, L., T. Iyama, T. Onishi, and S. Watanabe, "The specific absorption rate of mobile phones measured in a flat phantom and in the standardized human head phantom," EMC09 21S4-1, 245-247, 2009. Google Scholar
32. Alon, L., D. K. Sodickson, and C. M. Deniz, "Heat equation inversion framework for average SAR calculation from magnetic resonance thermal imaging," Bioelectromagnetics, Vol. 37, No. 7, 493-503, 2016. Google Scholar
33. Foster, K. R., "Thermal and nonthermal mechanisms of interaction of radio-frequency energy with biological systems," IEEE Transactions on Plasma Science, Vol. 28, No. 1, 15-23, 2000. Google Scholar
34. Sarimov, R., L. O. Malmgren, E. Markova, B. R. Persson, and I. Y. Belyaev, "Nonthermal GSM microwaves affect chromatin conformation in human lymphocytes similar to heat shock," IEEE Transactions on Plasma Science, Vol. 32, No. 4, 1600-1608, 2004. Google Scholar
35. Huber, E., M. Mirzaee, J. Bjorgaard, M. Hoyack, S. Noghanian, and I. Chang, "Dielectric property measurement of PLA," 2016 IEEE International Conference on Electro Information Technology (EIT), 0788-0792, IEEE, 2016. Google Scholar
36. https://www.omicsonline.org/universities/Italian National Research Council/.
37. La Gioia, A., et al., "Open-ended coaxial probe technique for dielectric measurement of biological tissues: Challenges and common practices," Diagnostics, Vol. 8, No. 2, 40, 2018. Google Scholar
38. Zajıcek, R. and J. Vrba, "Broadband complex permittivity determination for biomedical applications," Advanced Microwave Circuits and Systems, 365-385, IntechOpen, 2010. Google Scholar
39. https://speag.swiss/products/em-phantoms/phantoms/sam-v4-5bs/.
40. I. S. C. C. 34 "IEEE recommended practice for determining the peak spatial-average Specific Absorption Rate (SAR) in the human head from wireless communications devices: Measurement techniques," Standard 1528-2003, Institute of Electrical and Electronic Engineers, 2003. Google Scholar
41. Kritikos, H. and H. P. Schwan, "Potential temperature rise induced by electromagnetic field in brain tissues," IEEE Transactions on Biomedical Engineering, Vol. 26, No. 1, 29-34, 1979. Google Scholar