1. Pedder, D. A. G., A. D. Brown, and J. A. Skinner, "A contactless electrical energy transmission system," IEEE Transactions on Industrial Electronics, Vol. 46, 23-30, 1999.
doi:10.1109/41.744372 Google Scholar
2. Kim, C.-G., D.-H. Seo, J.-S. You, J.-H. Park, and B. H. Cho, "Design of a contactless battery charger for cellular phone," IEEE Transactions on Industrial Electronics, Vol. 48, 1238-1247, 2001.
doi:10.1109/41.969404 Google Scholar
3. Covic, G. A. and J. T. Boys, "Modern trends in inductive power transfer for transport applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 1, No. 1, 28-41, 2013.
doi:10.1109/JESTPE.2013.2264473 Google Scholar
4. Shinohara, N., "The wireless power transmission: Inductive coupling, radio wave, and resonance coupling," Wiley Interdisciplinary Reviews: Energy and Environment, Vol. 1, 337-346, 2012.
doi:10.1002/wene.43 Google Scholar
5. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, 2007.
doi:10.1126/science.1143254 Google Scholar
6. Ho, S. L., J. Wang, W. Fu, and M. Sun, "A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging," IEEE Transaction on Magnetics, Vol. 47, 1522-1525, 2011.
doi:10.1109/TMAG.2010.2091495 Google Scholar
7. Kar, D. P., P. P. Nayak, and S. Bhuyan, "Automatic frequency tuning wireless charging system for enhancement of efficiency," Electronics Letters, Vol. 50, No. 24, 1868-1870, 2014.
doi:10.1049/el.2014.2962 Google Scholar
8. Kar, D. P., S. S. Biswal, P. K. Sahoo, P. P. Nayak, and S. Bhuyan, "Selection of maximum power transfer region for resonant inductively coupled wireless charging system," AEU - International Journal of Electronics and Communications, Vol. 84, 84-92, 2018.
doi:10.1016/j.aeue.2017.11.023 Google Scholar
9. Hui, S. Y. R. and W. W. C. Ho, "A new generation of universal contactless battery charging platform for portable consumer electronic equipment," IEEE Transactions on Power Electronics, Vol. 20, 620-627, 2005.
doi:10.1109/TPEL.2005.846550 Google Scholar
10. Parise, M., V. Tamburrelli, and G. Antonini, "Mutual impedance of thin-wire circular loops in near-surface applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, 558-563, 2019.
doi:10.1109/TEMC.2018.2816030 Google Scholar
11. Orekan, T., P. Zhang, and C. Shih, "Analysis, design, and maximum power-efficiency tracking for undersea wireless power transfer," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 6, No. 2, 843-854, 2018.
doi:10.1109/JESTPE.2017.2735964 Google Scholar
12. RamRakhyani, A. K., S. Mirabbasi, and M. Chiao, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Transactions on Bio. Circuits and Systems, Vol. 5, 48-63, 2011.
doi:10.1109/TBCAS.2010.2072782 Google Scholar
13. Bhuyan, S., S. K. Panda, K. Sivananda, and R. Kumar, "A compact resonace-based wireless energy transfer system for implanted electronic devices," International Conference on Energy, Automation and Signal, 1-3, 2011. Google Scholar
14. Kar, D. P., P. P. Nayak, and S. Bhuyan, "Bi-directional magnetic resonance based wireless power transfer for electronic devices," Applied Physics Letters, Vol. 107, No. 13, 3901, 2015.
doi:10.1063/1.4931940 Google Scholar
15. Cannon, B. L., J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers," IEEE Transactions on Power Electronics, Vol. 24, No. 7, 1819-1825, 2009.
doi:10.1109/TPEL.2009.2017195 Google Scholar
16. Sahany, S., S. S. Biswal, D. P. Kar, P. K. Sahoo, and S. Bhuyan, "Impact of functioning parameters on the wireless power transfer system used for electric vehicle charging," Progress In Electromagnetics Research M, Vol. 79, 187-197, 2019.
doi:10.2528/PIERM18092610 Google Scholar
17. Low, Z. N., J. J. Casanova, and J. Lin, "A loosely coupled planar wireless power transfer system supporting multiple receivers," Advances in Power Electronics, Vol. 2010, Article ID 546529, 13 pages, 2010. Google Scholar
18. Ahn, D. and S. Hong, "Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 60, No. 7, 2602-2613, 2013.
doi:10.1109/TIE.2012.2196902 Google Scholar
19. Zhang, Y., T. Lu, Z. Zhao, F. He, K. Chen, and L. Yuan, "Selective wireless power transfer to multiple loads using receivers of di®erent resonant frequencies," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6001-6005, 2015.
doi:10.1109/TPEL.2014.2347966 Google Scholar
20. Fu, M., T. Zhang, C. Ma, and X. Zhu, "Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 3, 801-812, 2015.
doi:10.1109/TMTT.2015.2398422 Google Scholar
21. Kar, D. P., P. P. Nayak, S. Bhuyan, and S. K. Panda, "Study of resonance based wireless electric vehicle charging system in close proximity to metallic objects," Progress In Electromagnetic Research M, Vol. 37, 183-189, 2014.
doi:10.2528/PIERM14070503 Google Scholar
22. Choi, J. and C. H. Seo, "Analysis on transmission efficiency of wireless energy transmission resonator based on magnetic resonance," Progress In Electromagnetics Research M, Vol. 19, 221-237, 2011.
doi:10.2528/PIERM11050903 Google Scholar