1. Salamon, S. J., H. J. Hansen, and H. D. Abbott, "Modelling radio refractive index in the atmospheric surface layer," Electronics Letters, Vol. 51, No. 14, 1119-1121, 2015.
doi:10.1049/el.2015.0195 Google Scholar
2. Bean, B. R. and G. D. Thayer, "Models of the atmospheric radio refractive index," Proceedings of the IRE, Vol. 47, No. 5, 740-755, 1959.
doi:10.1109/JRPROC.1959.287242 Google Scholar
3. Hopfield, H. S., "Two-quartic tropospheric refractivity profile for correcting satellite data," Journal of Geophysical Research, Vol. 74, No. 18, 4487-4499, 1969.
doi:10.1029/JC074i018p04487 Google Scholar
4. Anthony, R. L., R. Chris, V. S. Sergey, and D. A. Kenneth, "Anderson vertical profiling of atmospheric refractivity from ground-based GPS," Radio Science, Vol. 137, No. 3, 1-21, 2002. Google Scholar
5. Wu, Y. Y., Z. J. Hong, P. Guo, and J. Zhang, "Simulation of atmospheric refractive profile retrieving from low-elevation ground-based GPS observations," Chinese Journal of Geophysics, Vol. 53, No. 4, 639-645, 2010.
doi:10.1002/cjg2.1533 Google Scholar
6. Chiou, M.-M. and J.-F. Kiang, "Retrieval of refractivity profile with ground-based radiooccultation by using an improved harmony search algorithm," Progress In Electromagnetics Research M, Vol. 51, 19-31, 2016.
doi:10.2528/PIERM16052505 Google Scholar
7. Ibeh, G. F. and G. A. Agbo, "Estimation of tropospheric refractivity with artificial neural network at Minna, Nigeria," Global Journal of Science Frontier Research, Vol. 12, No. 1, 9-14, 2012. Google Scholar
8. Tepecik, C. and I. Navruz, "A novel hybrid model for inversion problem of atmospheric refractivity estimation," AEU — International Journal of Electronics and Communications, Vol. 84, 258-264, 2018.
doi:10.1016/j.aeue.2017.12.009 Google Scholar
9. Cai, Y., S. Sun, C. Wang, and C. Gao, "The research on flux linkage characteristic based on BP and RBF neural network for switched reluctance motor," Progress In Electromagnetics Research M, Vol. 35, 151-161, 2014.
doi:10.2528/PIERM14011604 Google Scholar
10. Adediji, A. T. and S. T. Ogunjo, "Variations in non-linearity in vertical distribution of microwave radio refractivity," Progress In Electromagnetics Research M, Vol. 36, 177-183, 2014.
doi:10.2528/PIERM14041606 Google Scholar
11. Lee, C. M. and C. N. Ko, "Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm," Neurocomputing, Vol. 73, No. 1-3, 449-460, 2009.
doi:10.1016/j.neucom.2009.07.005 Google Scholar
12. Dubey, A. D., "K-Means based radial basis function neural networks for rainfall prediction," International Conference on Trends in Automation, Communications and Computing Technology, IEEE, Bangalore, 2015. Google Scholar
13. Addeh, A., A. Khormalib, and N. A. Golilarzc, "Control chart pattern recognition using RBF neural network with new training algorithm and practical features," ISA Transactions, Vol. 79, 202-216, 2018.
doi:10.1016/j.isatra.2018.04.020 Google Scholar
14. Kumar, R., S. Srivastava, J. R. P. Gupta, and A. Mohindru, "Temporally local recurrent radial basis function network for modelingand adaptive control of nonlinear systems," ISA Transactions, Vol. 87, 88-115, 2019.
doi:10.1016/j.isatra.2018.11.027 Google Scholar
15. Yang, X. P., Y. Q. Li, Y. Z. Sun, L. Teng, and T. K. Sarkar, "Fast and robust RBF neural network based on global K-means clustering with adaptive selection radius for sound source angle estimation," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3097-3107, 2018.
doi:10.1109/TAP.2018.2820320 Google Scholar
16. Zainud-Deen, S. H., H. A. El-Azem Malhat, K. H. Awadalla, and E. S. El-Hada, "Direction of arrival and state of polarization estimation using radial basis function neural network (RBFNN)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801 Google Scholar
17. Chen, D.W., "Research on traffic flow prediction in the big data environment based on the improved RBF neural network," IEEE Transactions on Industrial Informatics, Vol. 13, No. 4, 2000-2008, 2017.
doi:10.1109/TII.2017.2682855 Google Scholar
18. Wei, D. F., "Network traffic prediction based on RBF neural network optimized by improved gravitation search algorithm," Neural Computing and Applications, Vol. 28, No. 8, 2303-2312, 2017.
doi:10.1007/s00521-016-2193-z Google Scholar
19. Chen, B. H., S. C. Huang, C. Y. Li, and S. Y. Kuo, "Haze removal using radial basis function networks for visibility restoration applications," IEEE Transactions on Neural Networks and Learning Systems, Vol. 29, No. 8, 3828-3838, 2017. Google Scholar
20. Satapathy, S. K., S. Dehuri, and A. K. Jagadev, "EEG signal classification using PSO trained RBF neural network for epilepsy identification," Informatics in Medicine Unlocked, Vol. 6, 1-11, 2017.
doi:10.1016/j.imu.2016.12.001 Google Scholar
21. Kanojia, M. G. and S. Abraham, "Breast cancer detection using RBF neural network," International Conference on Contemporary Computing and Informatics, IEEE, Greater Noida, 2017. Google Scholar
22. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1101-1114, 2006.
doi:10.1163/156939306776930240 Google Scholar
23. Li, H. X., J. H. Chang, F. Xu, B. G. Liu, Z. X. Liu, L. Y. Zhu, and Z. B. Yang, "An RBF neural network approach for retrieving atmospheric extinction coefficients based on lidar measurements," Applied Physics B, Vol. 124, 184, 2018.
doi:10.1007/s00340-018-7055-1 Google Scholar
24. Smith, E. K. and S. Weintraub, "The constants in the equation for atmospheric refractive index at Radiofrequencies," Proceedings of the IRE, Vol. 41, No. 8, 1035-1037, 1953.
doi:10.1109/JRPROC.1953.274297 Google Scholar
25. Adediji, A. T. and M. O. Malhat, "Vertical profile of radio refractivity gradient in Akure South- West Nigeria," Progress In Electromagnetics Research C, Vol. 4, 157-168, 2008. Google Scholar
26. Demuth, H. and M. Beale, , Neural Network Toolbox for Use With MATLAB. User's Guide 6th edition, The Math Works, Inc., Natick, MA, 2007.