Vol. 86
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-10-30
A Method for Fast Establishing Tropospheric Refractivity Profile Model Based on Radial Basis Function Neural Network
By
Progress In Electromagnetics Research M, Vol. 86, 93-102, 2019
Abstract
A method based on the radial basis function neural network (RBFNN) is developed to fast establish the tropospheric refractivity profile model. Parameters of the RBFNN include SPREAD and the number of training samples is optimized. The actual measured data of meteorological station at Qingdao city in China are used as test data to evaluate the performance of RBFNN. The simulation results show that the root mean squared error (RMSE) has a minimum of 0.81 when SPREAD is 8.1. The simulated valuesagree well with the test data which is observed by using the sounding balloon method. Finally, the tropospheric refractivity profile model of a selected area is established by using two different simulation methods. This paper attempts to propose a method to fast establish the tropospheric refractivity profile model which providesanavailablemethod to correctthe atmospheric refractionerror in radar applications.
Citation
Tao Ma, Heng Liu, and Yu Zhang, "A Method for Fast Establishing Tropospheric Refractivity Profile Model Based on Radial Basis Function Neural Network," Progress In Electromagnetics Research M, Vol. 86, 93-102, 2019.
doi:10.2528/PIERM19072304
References

1. Salamon, S. J., H. J. Hansen, and H. D. Abbott, "Modelling radio refractive index in the atmospheric surface layer," Electronics Letters, Vol. 51, No. 14, 1119-1121, 2015.
doi:10.1049/el.2015.0195

2. Bean, B. R. and G. D. Thayer, "Models of the atmospheric radio refractive index," Proceedings of the IRE, Vol. 47, No. 5, 740-755, 1959.
doi:10.1109/JRPROC.1959.287242

3. Hopfield, H. S., "Two-quartic tropospheric refractivity profile for correcting satellite data," Journal of Geophysical Research, Vol. 74, No. 18, 4487-4499, 1969.
doi:10.1029/JC074i018p04487

4. Anthony, R. L., R. Chris, V. S. Sergey, and D. A. Kenneth, "Anderson vertical profiling of atmospheric refractivity from ground-based GPS," Radio Science, Vol. 137, No. 3, 1-21, 2002.

5. Wu, Y. Y., Z. J. Hong, P. Guo, and J. Zhang, "Simulation of atmospheric refractive profile retrieving from low-elevation ground-based GPS observations," Chinese Journal of Geophysics, Vol. 53, No. 4, 639-645, 2010.
doi:10.1002/cjg2.1533

6. Chiou, M.-M. and J.-F. Kiang, "Retrieval of refractivity profile with ground-based radiooccultation by using an improved harmony search algorithm," Progress In Electromagnetics Research M, Vol. 51, 19-31, 2016.
doi:10.2528/PIERM16052505

7. Ibeh, G. F. and G. A. Agbo, "Estimation of tropospheric refractivity with artificial neural network at Minna, Nigeria," Global Journal of Science Frontier Research, Vol. 12, No. 1, 9-14, 2012.

8. Tepecik, C. and I. Navruz, "A novel hybrid model for inversion problem of atmospheric refractivity estimation," AEU — International Journal of Electronics and Communications, Vol. 84, 258-264, 2018.
doi:10.1016/j.aeue.2017.12.009

9. Cai, Y., S. Sun, C. Wang, and C. Gao, "The research on flux linkage characteristic based on BP and RBF neural network for switched reluctance motor," Progress In Electromagnetics Research M, Vol. 35, 151-161, 2014.
doi:10.2528/PIERM14011604

10. Adediji, A. T. and S. T. Ogunjo, "Variations in non-linearity in vertical distribution of microwave radio refractivity," Progress In Electromagnetics Research M, Vol. 36, 177-183, 2014.
doi:10.2528/PIERM14041606

11. Lee, C. M. and C. N. Ko, "Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm," Neurocomputing, Vol. 73, No. 1-3, 449-460, 2009.
doi:10.1016/j.neucom.2009.07.005

12. Dubey, A. D., "K-Means based radial basis function neural networks for rainfall prediction," International Conference on Trends in Automation, Communications and Computing Technology, IEEE, Bangalore, 2015.

13. Addeh, A., A. Khormalib, and N. A. Golilarzc, "Control chart pattern recognition using RBF neural network with new training algorithm and practical features," ISA Transactions, Vol. 79, 202-216, 2018.
doi:10.1016/j.isatra.2018.04.020

14. Kumar, R., S. Srivastava, J. R. P. Gupta, and A. Mohindru, "Temporally local recurrent radial basis function network for modelingand adaptive control of nonlinear systems," ISA Transactions, Vol. 87, 88-115, 2019.
doi:10.1016/j.isatra.2018.11.027

15. Yang, X. P., Y. Q. Li, Y. Z. Sun, L. Teng, and T. K. Sarkar, "Fast and robust RBF neural network based on global K-means clustering with adaptive selection radius for sound source angle estimation," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3097-3107, 2018.
doi:10.1109/TAP.2018.2820320

16. Zainud-Deen, S. H., H. A. El-Azem Malhat, K. H. Awadalla, and E. S. El-Hada, "Direction of arrival and state of polarization estimation using radial basis function neural network (RBFNN)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801

17. Chen, D.W., "Research on traffic flow prediction in the big data environment based on the improved RBF neural network," IEEE Transactions on Industrial Informatics, Vol. 13, No. 4, 2000-2008, 2017.
doi:10.1109/TII.2017.2682855

18. Wei, D. F., "Network traffic prediction based on RBF neural network optimized by improved gravitation search algorithm," Neural Computing and Applications, Vol. 28, No. 8, 2303-2312, 2017.
doi:10.1007/s00521-016-2193-z

19. Chen, B. H., S. C. Huang, C. Y. Li, and S. Y. Kuo, "Haze removal using radial basis function networks for visibility restoration applications," IEEE Transactions on Neural Networks and Learning Systems, Vol. 29, No. 8, 3828-3838, 2017.

20. Satapathy, S. K., S. Dehuri, and A. K. Jagadev, "EEG signal classification using PSO trained RBF neural network for epilepsy identification," Informatics in Medicine Unlocked, Vol. 6, 1-11, 2017.
doi:10.1016/j.imu.2016.12.001

21. Kanojia, M. G. and S. Abraham, "Breast cancer detection using RBF neural network," International Conference on Contemporary Computing and Informatics, IEEE, Greater Noida, 2017.

22. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1101-1114, 2006.
doi:10.1163/156939306776930240

23. Li, H. X., J. H. Chang, F. Xu, B. G. Liu, Z. X. Liu, L. Y. Zhu, and Z. B. Yang, "An RBF neural network approach for retrieving atmospheric extinction coefficients based on lidar measurements," Applied Physics B, Vol. 124, 184, 2018.
doi:10.1007/s00340-018-7055-1

24. Smith, E. K. and S. Weintraub, "The constants in the equation for atmospheric refractive index at Radiofrequencies," Proceedings of the IRE, Vol. 41, No. 8, 1035-1037, 1953.
doi:10.1109/JRPROC.1953.274297

25. Adediji, A. T. and M. O. Malhat, "Vertical profile of radio refractivity gradient in Akure South- West Nigeria," Progress In Electromagnetics Research C, Vol. 4, 157-168, 2008.

26. Demuth, H. and M. Beale, , Neural Network Toolbox for Use With MATLAB. User's Guide 6th edition, The Math Works, Inc., Natick, MA, 2007.