1. Nikitin, A. Y., F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, "Edge and waveguide terahertz surface plasmon modes in graphene microribbons," Phys. Rev. B, Vol. 84, 161407, 2011.
doi:10.1103/PhysRevB.84.161407 Google Scholar
2. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927-10940, 2014.
doi:10.1039/C4NR03143A Google Scholar
3. Vicarelli, L., M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, "Graphene field-effect transistors as room-temperature terahertz detectors," Nat. Mater., Vol. 11, 865-871, 2012.
doi:10.1038/nmat3417 Google Scholar
4. Tomadin, A., A. Tredicucci, V. Pellegrini, M. S. Vitiello, and M. Polini, "Photocurrent-based detection of terahertz radiation in graphene," Appl. Phys. Lett., Vol. 103, 211120, 2013.
doi:10.1063/1.4831682 Google Scholar
5. Spirito, D., D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, "High performance bilayer-graphene terahertz detectors," Appl. Phys. Lett., Vol. 104, 061111, 2014.
doi:10.1063/1.4864082 Google Scholar
6. Koppens, F. H. L., T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, "Photodetectors based on graphene, other two-dimensional materials and hybrid systems," Nat. Nanotechnol., Vol. 9, 780-793, 2014.
doi:10.1038/nnano.2014.215 Google Scholar
7. Politano, A., H. K. Yu, D. Farías, and G. Chiarello, "Multiple acoustic surface plasmons in graphene/Cu(111) contacts," Phys. Rev. B, Vol. 97, 035414, 2018.
doi:10.1103/PhysRevB.97.035414 Google Scholar
8. Politano, A., I. Radović, D. Borka, Z. L. Mišković, H. K. Yude, D. Farías, and G. Chiarello, "Dispersion and damping of the interband π plasmon in graphene grown on Cu(111) foils," Carbon, Vol. 114, 70-76, 2017.
doi:10.1016/j.carbon.2016.11.073 Google Scholar
9. Politano, A., I. Radović, D. Borka, Z. L. Mišković, and G. Chiarello, "Interband plasmons in supported graphene on metal substrates: Theory and experiments," Carbon, Vol. 96, 91-97, 2016.
doi:10.1016/j.carbon.2015.09.053 Google Scholar
10. Politano, A., A. R. Marino, V. Formoso, D. Farías, R. Miranda, and G. Chiarello, "Quadratic dispersion and damping processes of π plasmon in monolayer graphene on Pt(111)," Plasmonics, Vol. 7, 369-376, 2012.
doi:10.1007/s11468-011-9317-1 Google Scholar
11. Politano, A., A. R. Marino, V. Formoso, D. Farías, R. Miranda, and G. Chiarello, "Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111)," Phys. Rev. B, Vol. 84, 033401, 2011.
doi:10.1103/PhysRevB.84.033401 Google Scholar
12. Cupolillo, A., A. Politano, N. Ligato, D. M. Cid Perez, G. Chiarello, and L. S. Caputi, "Substrate-dependent plasmonic properties of supported graphene," Surf. Sci., Vol. 634, 76, 2015.
doi:10.1016/j.susc.2014.11.002 Google Scholar
13. Politano, A., G. Chiarello, and C. Spinella, "Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy," Mater. Sci. Semicond. Process., Vol. 65, 88-99, 2017.
doi:10.1016/j.mssp.2016.05.002 Google Scholar
14. Ben Rhouma, M., M. Oueslati, and B. Guizal, "Surface plasmons on a doped graphene sheet with periodically modulated conductivity," Superlattices and Microstructures, Vol. 96, 212-219, 2016.
doi:10.1016/j.spmi.2016.05.021 Google Scholar
15. Nikitin, A. Yu., F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, "Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons," Phys. Rev. B, Vol. 84, 161407, 2011.
doi:10.1103/PhysRevB.84.161407 Google Scholar
16. Bludov, Y. V., N. M. R. Peres, and M. I. Vasilevskiy, "Graphene-based polaritonic crystal," Phys. Rev. B, Vol. 85, 081405, 2012.
doi:10.1103/PhysRevB.85.245409 Google Scholar
17. Ferreira, A. and N. M. R. Peres, "Complete light absorption in graphene-metamaterial corrugated structures," Phys. Rev. B, Vol. 86, 205401, 2012.
doi:10.1103/PhysRevB.86.205401 Google Scholar
18. Madani, A., S. Zhong, H. Tajalli, S. R. Entezar, A. Namdar, and Y. Ma, "Tunable metamaterials made of graphene-liquid crystal multilayers," Progress In Electromagnetics Research, Vol. 143, 545-558, 2013.
doi:10.2528/PIER13080302 Google Scholar
19. Freitag, M., et al. "Photocurrent in graphene harnessed by tunable intrinsic plasmons," Nature Comm., Vol. 4, 1951, 2013.
doi:10.1038/ncomms2951 Google Scholar
20. Gómez-Díaz, J. S., M. Esquius-Morote, and J. Perruisseau-Carrier, "Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips," Optics Express, Vol. 21, 24856-24872, 2013.
doi:10.1364/OE.21.024856 Google Scholar
21. Malhat, H. A., S. H. Zainud-Deen, and S. M. Gaber, "Graphene based transmitarray for terahertz applications," Progress In Electromagnetics Research M, Vol. 36, 185-191, 2014.
doi:10.2528/PIERM14050705 Google Scholar
22. Juneghani, F. A., A. Z. Nezhad, and R. Safian, "Analysis of diffraction graphene gratings using the C-method and design of a terahertz polarizer," Progress In Electromagnetics Research M, Vol. 65, 175-186, 2018.
doi:10.2528/PIERM17102901 Google Scholar
23. Nitas, M., C. S. Antonopoulos, and T. V. Yioultsis, "EB eigenmode formulation for the analysis of lossy and evanescent modes in periodic structures and metamaterials," IEEE Trans. Magnetics, Vol. 53, 2017.
doi:10.1109/TMAG.2017.2683459 Google Scholar
24. Monk, P., Finite Element Methods for Maxwell's Equations, Oxford University Press, 2003.
doi:10.1093/acprof:oso/9780198508885.001.0001
25. Boffi, D., F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer, 2013.
doi:10.1007/978-3-642-36519-5
26. Zhu, Y. and A. C. Cangellaris (eds.), Multigrid Finite Element Methods for Electromagnetic Field Modeling, John Wiley & Sons, 2006.
doi:10.1002/0471786381
27. Salonikios, V., S. Amanatiadis, N. Kantartzis, and T. V. Yioultsis, "Modal analysis of graphene microtubes utilizing a two-dimensional vectorial finite element method," Applied Physics A, Vol. 122, 351, 2016.
doi:10.1007/s00339-016-9862-8 Google Scholar
28. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, 064302, 2008.
doi:10.1063/1.2891452 Google Scholar
29. Gonçalves, P. A. D., E. J. C. Dias, Y. V. Bludov, and N. M. R. Peres, "Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach," Phys. Rev. B, Vol. 94, 195421, 2016.
doi:10.1103/PhysRevB.94.195421 Google Scholar
30. Politano, A. and G. Chiarello, "Emergence of a nonlinear plasmon in the electronic response of doped graphene," Carbon, Vol. 71, 176-80, 2014.
doi:10.1016/j.carbon.2014.01.026 Google Scholar