1. Achenbach, J. D., Wave Propagation in Elastic Solids, Eight Impression, Elsevier, 1999.
2. Kaplunov, J. D., L. Y. Kossovich, and E. V. Nolde, Dynamics of Thin Walled Elastic Bodies, Academic Press, 1998.
3. Andrianov, I. V., J. Awrejcewicz, V. V. Danishevs’kyy, and O. A. Ivankov, Asymtotic Methods in the Theory of Plates with Mixed Boundary Conditions, John Wiley & Sons, Ltd., 2014.
4. Knopoff, L., "The interaction between elastic wave motion and a magnetic field in electrical conductors," J. Geophys. Research, Vol. 60, 441-456, 1955. Google Scholar
5. Chadwick, P., "Elastic wave propagation in a magnetic field," Proceedings of the 9th International Congress of Applied Mechanics, Vol. 7, 143-153, 1957. Google Scholar
6. Kaliski, S. and J. Petykiewicz, "Equation of motion coupled with the field of temperature in a magnetic field involving mechanical and electrical relaxation for anisotropic bodies," Proceedings of Vibration Problems, Vol. 4, No. 1, 1959. Google Scholar
7. Kumar, R. and V. Chawla, "Effect of rotation and stiffness on surface wave propagation in a elastic layer lying over a generalized thermodiffusive elastic half-space with imperfect boundary," J. Solid Mechanics, Vol. 2, No. 1, 28-42, 2010. Google Scholar
8. Lotfy, K., "Wave propagation of generalized magneto-thermo elastic interactions in an elastic medium under influence of initial stress," Iranian J. Sci. Techn.: Trans. Mech. Eng., 2019. Google Scholar
9. Wang, Y. Z., F. M. Li, and K. Kishimoto, "Thermal effects on vibration properties of double-layered nanoplates at small scales," Composites Part B: Eng., Vol. 42, No. 5, 1311-1317, 2011. Google Scholar
10. El-Naggar, A. M., A. M. Abd-Allaa, and S. M. Ahmad, "Rayleigh waves in A magneto-elastic initially stressed conducting medium with the gravity field," Bull Calcutta, Math. Soc., Vol. 86, 51-56, 1994. Google Scholar
11. Abo-Dahab, S. M., R. A. Mohamed, and B. Singh, "Rotation and magnetic field effects on P wave reflection from stressfree surface elastic half-space with voids under one thermal relaxation time," Journal of Vibration and Control, Vol. 17, No. 12, 1827-1839, 2011. Google Scholar
12. Abd-Alla, A. M., S. M. Abo-Dahab, and F. S. Bayones, "Effect of the rotation on an infinite generalized magneto-thermoelastic diffusion body with a spherical cavity," Int. Review Phy., Vol. 5, No. 4, 171-181, 2011. Google Scholar
13. Selim, M. M., "Effect of thermal stress and magnetic field on propagation of transverse wave in an anisotropic incompressible dissipative initially stressed plate," Appl. Math. Inf. Sci., Vol. 11, No. 1, 195-200, 2017. Google Scholar
14. Qian, Z., F. Jin, K. Kishimoto, and Z. Wang, "Effect of initial stress on the Propagation behavior of SH-waves in multilayered piezoelectric composite structures," Sensors and Actuators A: Phys., Vol. 112, No. 2–3, 368-375, 2004. Google Scholar
15. Abo-Dahab, S. M., "Propagation of P waves from stress-free surface elastic half-space with voids under thermal relaxation and magnetic field," Appl. Math. Model., Vol. 34, No. 7, 1798-1806, 2010. Google Scholar
16. Leissa, A. W., Vibrations of Continous Systems, McGraw Hill Companies, Inc., 2011.
17. Aouadi, M., "A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion," Int. J. Solids Struct., Vol. 44, No. 17, 5711-5722, 2007. Google Scholar
18. Craster, R. V. and J. Kaplunov, Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism, Springer Wien Heidelberg, 2013.
19. Ewing, W. M., W. S. Jardetzky, and F. Press, Elastic Layers in Layered Media, McGraw-Hill, 1957.
20. Altenbach, H., V. A. Eremeyev, and K. Naumenko, "On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer," ZAMM, Vol. 95, No. 10, 1004-1011, 2015. Google Scholar
21. Lee, P. and N. Chang, "Harmonic waves in elastic sandwich plates," J. Elasticity, Vol. 9, No. 1, 51-69, 1979. Google Scholar
22. Kaplunov, J., D. Prikazchikov, and L. Prikazchikova, "Dispersion of elastic waves in a strongly inhomogeneous three-layered plate," Int. J. Solids Struct., Vol. 113, 169-179, 2017. Google Scholar
23. Naumenko, K. and V. A. Eremeyev, "A layer-wise theory for laminated glass and photovoltaic panels," Compos. Struct., Vol. 112, 283-291, 2014. Google Scholar
24. Sayyad, A. S. and Y. M. Ghugal, "Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature," Compos. Struct., Vol. 171, 486-504, 2017. Google Scholar
25. Sahin, O., B. Erbas, J. Kaplunov, and T. Savsek, "The lowest vibration modes of an elastic beam composed of alternating stiff and soft components," Arch. Appl. Mech., 2019, doi.org/10.1007/s00419-019-01612-2. Google Scholar
26. Belarbi, M. O., A. Tati, H. Ounis, and A. Khechai, "On the free vibration analysis of laminated composite and sandwich plates: A layerwise finite element formulation," Latin American J. Solids Struc., 2017. Google Scholar
27. Shishehsaz, M., H. Raissi, and S. Moradi, "Stress distribution in a five-layer circular sandwich composite plate based on the third and hyperbolic shear deformation theories," Mechanics Adv. Materials Struct., 2019. Google Scholar
28. Jiangong, Y., M. Qiujuan, and S. Shan, "Wave propagation in non-homogeneous magneto-electro-elastic hollow cylinders," Ultrasonic, Vol. 48, No. 8, 664-677, 2008. Google Scholar
29. Bin, W., Y. Jiangong, and C. Cunfu, "Wave propagation in non-homogeneous magneto-electro-elastic plates," J. Sound Vib., Vol. 317, No. 1–2, 250-264, 2008. Google Scholar
30. Mandi, A., S. Kundu, P. Chandra, and P. Pati, "An analytic study on the dispersion of Love wave propagation in double layers lying over inhomogeneous half-space," J. Solid Mechanics, Vol. 11, No. 2, 570-580, 2019. Google Scholar
31. Soliman, S. A. M., K. F. A. Hussein, and A. A. Ammar, "Electromagnetic resonances of natural grasslands and their effects on radar vegetation index," Progress In Electromagnetics Research B, Vol. 86, 9-38, 2020. Google Scholar
32. Demirkus, D., "Antisymmetric bright solitary SH waves in a nonlinear heterogeneous plate," Z. Angew. Math. Phys., Vol. 69, 2018. Google Scholar
33. Satti, J. U., M. Afzal, and R. Nawaz, "Scattering analysis of a partitioned wave-bearing cavity containing different material properties," Phisica Scripta, Vol. 94, No. 11, 2019. Google Scholar
34. Abo-Dahab, S. M., K. Lotfy, and K. Gohaly, "A. Rotation and magnetic field effect on surface waves propagation in an elastic layer lying over a generalized thermoelastic diffusive half-space with imperfect boundary," Math. Probl. Eng., 671783, 2015. Google Scholar
35. Anya, A. I., M. W. Akhtar, S. M. Abo-Dahab, H. Kaneez, A. Khan, and A. Jahangir, "Effects of a magnetic field and initial stress on reflection of SV-waves at a free surface with voids under gravity," J. Mech. Behavior Mat., 20180002, 2018. Google Scholar
36. Farhan, A. M. and A. M. Abd-Alla, "Effect of rotation on the surface wave propagation in magneto-thermoelastic materials with voids," J. Ocean Engr. Sci., Vol. 3, 334-342, 2018. Google Scholar