Vol. 92
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-05
Diagonally Asymmetric CSRRs Loaded Circularly Polarized Antenna with Frequency Selective Surface
By
Progress In Electromagnetics Research M, Vol. 92, 43-54, 2020
Abstract
This paper presents a compact single feed circularly polarized (CP) antenna along with a frequency selective surface (FSS) that acts as a partially reflective surface over the patch. Patch is loaded with four diagonally asymmetric complementary split ring resonators (CSRRs) in order to achieve circular polarization. In this paper a novel design of reflective type FSS layer is presented at 2.4 GHz. The size of FSS unit cell is approximately 0.132λ0 × 0.132λ0, and it is placed at a distance of 0.146λ0 from the patch. Simulated impedance bandwidth of the antenna for S11 < -10 dB is from 2.385 GHz to 2.506 GHz (121 MHz or 4.95%) which covers the entire IEEE 802.11 WLAN band (2.4 GHz-2.484 GHz). Position of the four CSRRs on the patch and the height of FSS screen are determined through parametric studies, and the detailed analyses in terms of reflection coefficient, axial ratio, and gain variation are also presented. Gain of the antenna is 3.02 dBic at the operating frequency 2.45 GHz. Measured results are in good agreement with the simulated ones.
Citation
Soumik Dey, Ankita Indu, Santanu Mondal, and Partha Pratim Sarkar, "Diagonally Asymmetric CSRRs Loaded Circularly Polarized Antenna with Frequency Selective Surface," Progress In Electromagnetics Research M, Vol. 92, 43-54, 2020.
doi:10.2528/PIERM20030203
References

1. Balanis, C. A., "Antenna theory: A review," Proceedings of the IEEE, Vol. 80, No. 1, 7-23, 1992.
doi:10.1109/5.119564

2. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.

3. Sharma, P. C. and K. C. Gupta, "Analysis and optimized design of single feed circularly polarized microstrip antennas," IEEE Trans. Antennas Propag., Vol. 31, No. 6, 949-955, 1983.
doi:10.1109/TAP.1983.1143162

4. Iwasaki, H., "A circularly polarized small-size microstrip antenna with a cross slot," IEEE Trans. Antennas Propag., Vol. 44, No. 10, 1399-1401, 1996.
doi:10.1109/8.537335

5. Yang, K. P., K. L. Wong, and J. Lu, "Compact circularly polarized triangular microstrip antenna with y-shaped slot," Microw. Opt. Technol. Lett., Vol. 20, No. 1, 31-34, 1999.
doi:10.1002/(SICI)1098-2760(19990105)20:1<31::AID-MOP8>3.0.CO;2-K

6. Sharma, W. C., H. Kumar, and G. Kumar, "Single feed dual band circularly polarized stub loaded tunable microstrip patch antenna," IEEE Asia-Pacific Microwave Conference (APMC), 2016.

7. Chen, W. S., C. K. Wu, and K. L. Wong, "Single-feed square-ring microstrip antenna with truncated corners for compact circular polarisation operation," Electronics Letters, Vol. 34, No. 11, 1045-1047, 1998.
doi:10.1049/el:19980818

8. Nasimuddin, Z. N. Chen, and X. Qing, "Asymmetric-circular shaped slotted microstrip antennas for circular polarization and RFID applications," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3821-3828, 2010.
doi:10.1109/TAP.2010.2078476

9. Chen, Z. N. and X. Qing, "Compact circularly polarized asymmetric-slotted microstrip patch antennas," Microw. Opt. Technol. Lett., Vol. 54, No. 8, 1920-1927, 2012.
doi:10.1002/mop.26927

10. Qing, X. and Z. N. Chen, "Compact asymmetric-slit microstrip antennas for circular polarization," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 285-288, 2011.
doi:10.1109/TAP.2010.2090468

11. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-Interscience, 2006.

12. Liu, X. Y., Z. T. Wu, Y. Fan, and E. M. Tentzeris, "A miniaturized CSRR loaded wide-beamwidth circularly polarized implantable antenna for subcutaneous real-time glucose monitoring," IEEE Antennas Wireless Propag. Lett., Vol. 16, 577-580, 2017.
doi:10.1109/LAWP.2016.2590477

13. Dong, Y., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 772-785, 2012.
doi:10.1109/TAP.2011.2173120

14. Ke, L., G.-M. Wang, X. Tong, and H.-X. Xu, "A novel circularly polarized antenna based on the single complementary split ring resonator," IEEE International Symposium on Signals, Systems and Electronics, 2010.

15. Dey, S., S. Mondal, and P. P. Sarkar, "Single feed circularly polarized antenna loaded with complementary split ring resonator (CSRR)," Progress In Electromagnetics Research M, Vol. 78, 175-184, 2019.
doi:10.2528/PIERM18090503

16. Dey, S., S. Mondal, and P. P. Sarkar, "Reactive impedance surface (RIS) based asymmetric slit patch antenna loaded with complementary split ring resonator (CSRR) for circular polarization," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 8, 1003-1013, 2019.
doi:10.1080/09205071.2019.1583608

17. Xu, H. X., G. M. Wang, J. G. Liang, M. Q. Qi, and X. Gao, "Compact circularly polarized antennas combining meta-surfaces and strong space-filling meta-resonators," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3442-3450, 2013.
doi:10.1109/TAP.2013.2255855

18. Wang, Y., et al. "Planar vortex beam generator for circularly polarized incidence based on FSS," IEEE Trans. Antennas Propag., Vol. 68, No. 3, 1514-1522, 2019.
doi:10.1109/TAP.2019.2938666

19. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 258-270, 2010.
doi:10.1109/TAP.2009.2037702

20. Liu, Z. G., Z. X. Cao, and L. N. Wu, "Compact low-profile circularly polarized Fabry-Perot resonator antenna fed by linearly polarized microstrip patch," IEEE Antennas Wireless Propag. Lett., Vol. 15, 524-527, 2015.

21. Lee, D. H., Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Directivity enhancement of circular polarized patch antenna using ring-shaped frequency selective surface superstrate," Microw. Opt. Technol. Lett., Vol. 49, No. 1, 199-201, 2007.
doi:10.1002/mop.22084

22. Chatterjee, A. and S. K. Parui, "A dual layer frequency selective surface reflector for wideband applications," Radio Engineering, Vol. 25, No. 1, 2016.

23. CST Microwave Studio Manual, ver. 14, Computer Simulation Technology, Framingham, MA.