Vol. 94
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-07
Measurement of the Local Intrinsic Curvature of a L = 1 Radio-Vortex at 30 GHz
By
Progress In Electromagnetics Research M, Vol. 94, 1-8, 2020
Abstract
We exploit the properties of differential geometry of minimal surfaces to introduce a novel approach for characterizing wavefronts. Since Gaussian and mean curvatures describe global and local properties of any differentiable surface, a method for characterizing wavefronts endowed with non--trivial topological features has been introduced. We provide experimental evidence that the wavefront of an l = 1 radio-vortex at 30 GHz can be fully characterized by exploiting the wavefront phase in the far field of the source, accessing a small portion of the beam only. A particular care is dedicated to distinguish diffraction effects from the intrinsic curvature of the helicoidal wavefront. Results are applicable to the local measurement of the topological charge and to the local detection of orbital angular momentum radiation at the millimetric wavelengths.
Citation
Lorenzo Scalcinati, Bruno Paroli, Mario Zannoni, and Marco Alberto Carlo Potenza, "Measurement of the Local Intrinsic Curvature of a L = 1 Radio-Vortex at 30 GHz," Progress In Electromagnetics Research M, Vol. 94, 1-8, 2020.
doi:10.2528/PIERM20041407
References

1. Bazhenov, V. Yu., M. V. Vasnetsov, and M. S. Soskin, "Laser beams with screw dislocations in their wavefronts," JEPT Lett., Vol. 52, 429, 1990.        Google Scholar

2. Bazhenov, V. Yu., M. S. Soskin, and M. V. Vasnetsov, "Screw dislocations in light wavefronts," J. Mod. Optics, Vol. 39, 985-990, 1992.
doi:10.1080/09500349214551011        Google Scholar

3. Allen, L., M.W. Beijersbergen, R. J. C. Spreeuw, and J. P.Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A, Vol. 45, 8185, 1992.
doi:10.1103/PhysRevA.45.8185        Google Scholar

4. Yan, Y., et al. "High-capacity millimetre-wave communications with orbital angular momentum multiplexing ," Nature Communications, Vol. 5, 4876, 2014.
doi:10.1038/ncomms5876        Google Scholar

5. Zhang, C. and L. Ma, "Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna," Sci. Rep., Vol. 7, 4585, 2017.
doi:10.1038/s41598-017-04313-4        Google Scholar

6. Ren, Y., G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M. P. J. Lavery, B. I. Erkmen, S. Dolinar, M. Tur, M. A. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, "Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence," Opt. Lett., Vol. 39, 2845, 2014.
doi:10.1364/OL.39.002845        Google Scholar

7. Li, S., S. Chen, C. Gao, A. E. Willner, and J. Wang, "Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives," Opt. Commun., Vol. 408, 68-81, 2018.
doi:10.1016/j.optcom.2017.09.034        Google Scholar

8. Paroli, B., E. Chiadroni, M. Ferrario, V. Petrillo, M. A. C. Potenza, A. R. Rossi, L. Serafini, and V. Shpakov, "Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources," Europhys. Lett., Vol. 111, 44003, 2015.
doi:10.1209/0295-5075/111/44003        Google Scholar

9. Paroli, B., E. Chiadroni, M. Ferrario, A. Mostacci, V. Petrillo, M. A. C. Potenza, A. R. Rossi, and L. Serafini, "Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel," Nucl. Instrum. Meth. Phys. Res. B, Vol. 355, 217-220, 2015.
doi:10.1016/j.nimb.2015.03.070        Google Scholar

10. Paroli, B., E. Chiadroni, M. Ferrario, and M. A. C. Potenza, "Analogical optical modeling of the asymmetric lateral coherence of betatron radiation," Opt. Express, Vol. 23, 29912, 2015.
doi:10.1364/OE.23.029912        Google Scholar

11. Paroli, B., M. Siano, and M. A. C. Potenza, "The local intrinsic curvature of wavefronts allows to The local intrinsic curvature of wavefronts allows to detect optical vortices," Opt. Express, Vol. 27, 17550-17560, 2019.
doi:10.1364/OE.27.017550        Google Scholar

12. Paroli, B., M. Siano, L. Teruzzi, and M. A. C. Potenza, "Single-shot measurement of phase and topological properties of orbital angular momentum radiation through asymmetric lateral coherence," Phys. Rev. Acc. and Beams, Vol. 22, 032901, 2019.
doi:10.1103/PhysRevAccelBeams.22.032901        Google Scholar

13. Paroli, B., A. Cirella, I. Drebot, V. Petrillo, M. Siano, and M. A. C. Potenza, "Asymmetric lateral coherence of OAM radiation reveals topological charge and local curvature," J. Opt., Vol. 20, 075605, 2018.
doi:10.1088/2040-8986/aac936        Google Scholar

14. Meusnier, J. B., "Mémoire sur la courbure des surfaces," Mém. Mathém. Phys. Acad. Sci. Paris, prés. par div. Savans, Vol. 10, 477-510, 1785 (Presented in 1776).        Google Scholar

15. Schoen, R., "Uniqueness, symmetry, and embeddedness of minimal surfaces," J. Differ. Geom., Vol. 18, 791-809, 1983.
doi:10.4310/jdg/1214438183        Google Scholar

16. Paroli, B., M. Siano, and M. A. C. Potenza, "Asymmetric lateral coherence allows precise wavefront characterization," Europhys. Lett., Vol. 122, 44001, 2018.
doi:10.1209/0295-5075/122/44001        Google Scholar

17. Meeks, W. H. and J. P’erez, "The classical theory of minimal surfaces," Bulletin (New Series) of the American Mathematical Society, Vol. 48, 325-407, 201.
doi:10.1090/S0273-0979-2011-01334-9        Google Scholar