Vol. 97
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-18
Analysis of Surface Wave Attenuation in Double-Layer Magnetic Absorbing Sheet for Wide Frequency Range Application
By
Progress In Electromagnetics Research M, Vol. 97, 167-176, 2020
Abstract
We firstly derived the simplified formulas for calculating attenuation constants of surface wave in double-layer magnetic absorbing sheets (MASs). The fabricated two kinds of magnetic absorbing sheets, having advantages in the low and high frequency range respectively, were used to design a group of 0.5 mm-thick double-layer sheets. Numerical calculation results show that the surface wave attenuation constants of double-layer absorbing sheet with a proper combination of the two MASs can be significantly enhanced in the whole frequency range, compared to those single-layer sheets of the same thickness. Furthermore, the simulations of mono-static RCS reduction of the metal slab coated with double-layer MAS well confirm the calculation analysis. This work demonstrates that it is feasible for double-layer magnetic absorbing sheet to enhance the surface wave attenuation ability and broaden application frequency range.
Citation
Yinrui Li, Jiaji Yang, Dongmeng Li, Wei Gong, Xian Wang, and Rong Zhou Gong, "Analysis of Surface Wave Attenuation in Double-Layer Magnetic Absorbing Sheet for Wide Frequency Range Application," Progress In Electromagnetics Research M, Vol. 97, 167-176, 2020.
doi:10.2528/PIERM20051406
References

1. Chen, H.-Y., L.-J. Lu, D.-J. Guo, H.-P. Lu, P.-H. Zhou, J.-L. Xie, and L.-J. Deng, "Relationships between surface wave attenuation and the reflection properties of thin surface wave absorbing layer," PIERS Proceedings, 1146-1150, Guangzhou, China, August 25–28, 2014.

2. Li, Y., D. Li, X. Wang, et al. "Influence of the electromagnetic parameters on the surface wave attenuation in thin absorbing layers," AIP Adv., Vol. 8, No. 5, 056616, 2018.
doi:10.1063/1.5007254

3. Chen, H. Y., H. P. Lu, J. L. Xie, et al. "Improvement of surface waves attenuation performance with a magnetic thin film loading," IEEE Trans. Magn., Vol. 50, No. 7, 1-5, 2014.

4. Stroobandt, S., The characterization of surface waves on low-observable structures, Master's thesis, Univ. of Hull, 1997.

5. Ling, R. T., J. D. Scholler, and P. Ya. Ufimtsev, "The propagation and excitation of surface waves in an absorbing layer," Progress In Electromagnetics Research, Vol. 19, 49-91, 1998.
doi:10.2528/PIER97071800

6. Ufimtsev, P. Y., R. T. Ling, and J. D. Scholler, "Transformation of surface waves in homogeneous absorbing layers," IEEE Trans. Antennas Propag., Vol. 48, No. 2, 214-222, 2000.
doi:10.1109/8.833070

7. Ufimtsev, P. Y. and R. T. Ling, "New results for the properties of TE surface waves in absorbing layers," IEEE Trans. Antennas Propag., Vol. 49, No. 10, 1445-1452, 2001.
doi:10.1109/8.954933

8. Chen, H.-Y., L.-J. Deng, P.-H. Zhou, J. Xie, and Z.-W. Zhu, "Improvement of surface electromagnetic waves attenuation with resistive loading," Progress In Electromagnetics Research Letters, Vol. 26, 143-152, 2011.
doi:10.2528/PIERL11072202

9. Chen, H. Y., L. J. Deng, and P. H. Zhou, "Suppression of surface wave from finite conducting surfaces with impedance loading at margins," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14–15, 1977-1989, 2010.
doi:10.1163/156939310793676096

10. Liu, J., M. Itoh, M. Terada, et al. "Enhanced electromagnetic wave absorption properties of Fe nanowires in gigaherz range," Appl. Phys. Lett., Vol. 91, No. 9, 093101, 2007.
doi:10.1063/1.2775804

11. Wang, X., Q. Li, Z. Su, et al. "Enhanced microwave absorption of multiferroic Co2Z hexaferrite-BaTiO3 composites with tunable impedance matching," J. Alloy. Compd., Vol. 643, 111-115, 2015.
doi:10.1016/j.jallcom.2015.04.122

12. Ye, J., Y. Liu, X. Chen, et al. "Microwave electromagnetic and absorption properties of SmN/α-Fe/Sm2Fe17N3 composites in 0.5–18 GHz range," J. Alloy. Compd., Vol. 526, 59-62, 2012.
doi:10.1016/j.jallcom.2012.02.103

13. Li, Y., D. Li, H. Luo, et al. "Co-evaluation of reflection loss and surface wave attenuation for magnetic absorbing material," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 6057-6060, 2018.
doi:10.1109/TAP.2018.2867070

14. Chen, H.-Y., P.-H. Zhou, L. Chen, and L.-J. Deng, "Study on the properties of surface waves in coated RAM layers and monostatic RCSR performances of the coated slab," Progress In Electromagnetics Research M, Vol. 11, 123-135, 2010.
doi:10.2528/PIERM09122101