1. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge Univ. Press, 2009.
2. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, 1999. Google Scholar
3. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its application for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, 2005. Google Scholar
4. Rajo-Iglesias, E., L. Inclan-Sanchez, J.-L. Vazquez-Roy, and E. Garcia-Munoz, "Size reduction of Mushroom-type EBG surfaces by using edge-located vias," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 9, 670-672, 2007. Google Scholar
5. Cheng, H. R., Q. Song, Y.-C. Guo, X.-Q. Chen, and X.-W. Shi, "Design of a novel EBG structure and its application in fractal microstrip antenna," Progress In Electromagnetics Research C, Vol. 11, 81-90, 2009. Google Scholar
6. Han, Z.-J., W. Song, and X.-Q. Sheng, "Gain enhancement and RCS reduction for patch antenna by using polarization-dependent EBG surface," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1631-1634, 2017. Google Scholar
7. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "A compact two via hammer spanner-type polarization-dependent electromagnetic-bandgap structure," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 4, 284-286, 2018. Google Scholar
8. Ghosh, S., T.-N. Tran, and T. Le-Ngoc, "Dual-layer EBG-based miniaturized multi-element antenna for MIMO systems," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 3985-3997, 2014. Google Scholar
9. Zhang, S., "Novel dual-band compact HIS and its applications of reducing array in-band RCS," Microw. Opt. Technol. Lett., Vol. 58, No. 3, 700-704, 2016. Google Scholar
10. Yang, N., Z. N. Chen, Y. Y. Wang, and M. Y. W. Chia, "A two-layer compact electromagnetic bandgap (EBG) structure and its applications in microstrip filter design," Microw. Opt. Technol. Lett., Vol. 37, No. 1, 62-64, 2003. Google Scholar
11. Bantavis, P., M. Le Roy, A. Perennec, R. Lababidi, and D. Le Jeune, "Miniaturized wide- and dual-band multilayer electromagnetic bandgap for antenna isolation and on-package/PCB noise suppression," IEEE 22nd Workshop on Signal and Power Integrity (SPI), 1-4, Brest, France, 2018. Google Scholar
12. Wang, C.-D. and T.-L. Wu, "Model and mechanism of miniaturized and stop band-enhanced interleaved EBG structure for power/ground noise suppression," IEEE Trans. Electromagn. Compat., Vol. 55, No. 1, 159-167, 2013. Google Scholar
13. Veeramani, A., A. S. Arezomand, J. Vijayakrishnan, and F. B. Zarrabi, "Compact S-shaped EBG structures for reduction of mutual coupling," IEEE Fifth International Conference on Advanced Computing Communication Technologies, 21-25, Haryana, India, 2015. Google Scholar
14. Jiang, T., T. Jiao, and Y. Li, "A low mutual coupling MIMO antenna using periodic multi-layered electromagnetic band gap structures," Appl. Comput. Electromagn. Soc. J., Vol. 33, No. 3, 305-311, 2018. Google Scholar
15. Azarbar, A. and J. Ghalibafan, "A compact low-permittivity dual-layer EBG structure for mutual coupling reduction," International Journal of Antennas and Propagation, Vol. 2011, 1-6, 2011. Google Scholar
16. Nadeem, I. and D.-Y. Choi, "Study on mutual coupling reduction technique for MIMO antennas," IEEE Access, Vol. 7, 563-586, 2018. Google Scholar
17. Remski, R., "Analysis of photonic bandgap surfaces using Ansoft HFSS," Microwave Journal, Vol. 43, No. 9, 190-199, 2000. Google Scholar
18. Pozar, D., "Input impedance and mutual coupling of rectangular microstrip antennas," IEEE Trans. Antennas Propag., Vol. 30, No. 6, 1191-1196, 1982. Google Scholar
19. Pozar, D. and D. Schaubert, "Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds," IEEE Trans. Antennas Propag., Vol. 32, No. 10, 1101-1107, 1984. Google Scholar
20. Steyskal, H. and J. S. Herd, "Mutual coupling compensation in small array antennas," IEEE Trans. Antennas Propag., Vol. 38, No. 12, 1971-1975, 1990. Google Scholar
21. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "Mutual coupling reduction in patch antenna using electromagnetic band gap (EBG) structure for IoT application," Proc. IEEE International Conference on Communication Information and Computing Technology (ICCICT), 1-4, Mumbai, India, 2018. Google Scholar
22. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003. Google Scholar
23. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "A compact dual band gap electromagnetic band gap structure," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 596-600, 2019. Google Scholar
24. Park, J. D., M. U. Rahman, and H. N. Chen, "Isolation enhancement of wide-band MIMO array antennas utilizing resistive loading," IEEE Access, Vol. 7, 81020-81026, 2019. Google Scholar
25. Rahman, M. U., D. S. Ko, and J. D. Park, "A compact multiple notched ultra-wide band antenna with an analysis of the CSRR-TO-CSRR coupling for portable UWB applications," Sensors, Vol. 17, No. 10, 1-13, 2017. Google Scholar
26. Rahman, M. U., M. N. Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Bandwidth enhancement and frequency scanning array antenna using novel UWB filter integration technique for OFDM UWB radar applications in wireless vital signs monitoring," Sensors (Basel), Vol. 18, No. 9, 1-14, 2018. Google Scholar
27. Rahman, M. U., M. N. Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications," Electronics, Vol. 8, No. 2, 1-14, 2019. Google Scholar
28. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, No. 9, 705-707, 2003. Google Scholar
29. Suntives, A. and R. Abhari, "Miniaturization and isolation improvement of a multiple-patch antenna system using electromagnetic bandgap structures," Microw. Opt. Technol. Lett., Vol. 55, No. 7, 1609-1612, 2013. Google Scholar
30. Yu, A. and X. Zhang, "A novel method to improve the performance of microstrip antenna arrays using a dumbbell EBG structure," IEEE Antennas Wireless Propag. Lett., Vol. 2, 170-172, 2003. Google Scholar
31. Maddio, S., G. Pelosi, M. Righini, S. Selleri, and I. Vecchi, "Mutual coupling reduction inmultilayer patch antennas via meander line parasites," Electron. Lett., Vol. 54, No. 15, 922-924, 2018. Google Scholar
32. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 9, 57-59, 2010. Google Scholar
33. Xu, H. X., G. M. Wang, and M. Q. Qi, "Hilbert-shaped magnetic waveguided metamaterials for electromagnetic coupling reduction of microstrip antenna array," IEEE Trans. Magn., Vol. 49, No. 4, 1526-1529, 2013. Google Scholar
34. Zheng, Q. R., Y. Q. Fu, and N. Yuan, "A novel compact spiral electromagnetic band gap (EBG) structures," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1656-1660, 2008. Google Scholar