1. Kim, K., J. Guo, X. Xu, and D. L. Fan, "Recent progress on man-made inorganic nanomachines," Small, Vol. 11, No. 33, 4037-4057, 2015.
doi:10.1002/smll.201500407 Google Scholar
2. Wang, W., W. Duan, Z. Zhang, M. Sun, A. Sen, and T. E. Mallouk, "A tale of two forces: Simultaneous chemical and acoustic propulsion of bimetallic micromotors," Chemical Communications, Vol. 51, No. 6, 1020-1023, 2015.
doi:10.1039/C4CC09149C Google Scholar
3. Xu, T., W. Gao, L. P. Xu, X. Zhang, and S. Wang, "Fuel-free synthetic micro-/nanomachines," Advanced Materials, Vol. 29, No. 9, 1603250, 2017.
doi:10.1002/adma.201603250 Google Scholar
4. Pak, O. S., W. Gao, J. Wang, and E. Lauga, "High-speed propulsion of flexible nanowire motors: Theory and experiments," Soft Matter, Vol. 7, No. 18, 8169-8181, 2011.
doi:10.1039/c1sm05503h Google Scholar
5. Pawashe, C., S. Floyd, E. Diller, and M. Sitti, "Two-dimensional autonomous microparticle manipulation strategies for magnetic microrobots in fluidic environments," IEEE Transactions on Robotics, Vol. 28, No. 2, 467-477, 2012.
doi:10.1109/TRO.2011.2173835 Google Scholar
6. Fusco, S., M. S. Sakar, S. Kennedy, C. Peters, R. Bottani, F. Starsich, A. Mao, G. A. Sotiriou, S. Pane, S. E. Pratsinis, D. Mooney, and B. J., "An integrated microrobotic platform for on-demand, targeted therapeutic interventions," Advanced Materials, Vol. 26, No. 6, 952-957, 2014.
doi:10.1002/adma.201304098 Google Scholar
7. Nelson, B. J., I. K. Kaliakatsos, and J. J. Abbott, "Microrobots for minimally invasive medicine," Annual Review of Biomedical Engineering, Vol. 12, No. 1, 55-85, 2010.
doi:10.1146/annurev-bioeng-010510-103409 Google Scholar
8. Sitti, M., H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, "Biomedical Applications of Untethered Mobile Milli/Microrobots," Proceedings of the IEEE, Vol. 103, No. 2, 205-224, 2015.
doi:10.1109/JPROC.2014.2385105 Google Scholar
9. Kim, D. I., H. Lee, S. H. Kwon, Y. J. Sung, W. K. Song, and S. Park, "Bilayer hydrogel sheet-type intraocular microrobot for drug delivery and magnetic nanoparticles retrieval," Advanced Healthcare Materials, Vol. 9, 2000118, 2020.
doi:10.1002/adhm.202000118 Google Scholar
10. Xie, M., W. Zhang, C. Fan, C. Wu, Q. Feng, J. Wu, Y. Li, R. Gao, Z. Li, Q. Wang, Y. Cheng, and B. He, "Bioinspired soft microrobots with precise magneto-collective control for microvascular thrombolysis," Advanced Materials, Vol. 32, 2000366, 2020.
doi:10.1002/adma.202000366 Google Scholar
11. Xie, H., M. Sun, X. Fan, Z. Lin, W. Chen, L. Wang, L. Dong, and Q. He, "Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation," Science Robotics, Vol. 4, No. 28, eaav8006, 2019.
doi:10.1126/scirobotics.aav8006 Google Scholar
12. He, Y., L. Wang, L. Zhong, Y. Liu, and W. Rong, "Transporting microobjects using a magnetic microrobot at water surfaces," 15th International Conference on Control, Automation, Robotics and Vision ICARCV, 108-112, 2018. Google Scholar
13. Kim, S. J., G. H. Jang, S. M. Jeon, and J. K. Nam, "A crawling and drilling microrobot driven by an external oscillating or precessional magnetic field in tubular environments," Journal of Applied Physics, Vol. 117, 17A703, 2015.
doi:10.1063/1.4906446 Google Scholar
14. Steager, E. B., M. S. Sakar, C. Magee, M. Kennedy, A. Cowley, and V. Kumar, "Automated biomanipulation of single cells using magnetic microrobots," International Journal of Robotics Research, Vol. 32, No. 3, 346-359, 2013.
doi:10.1177/0278364912472381 Google Scholar
15. Yu, C., J. Kim, H. Choi, J. Choi, S. Jeong, K. Cha, J. O. Park, and S. Park, "Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot," Sensors and Actuators, A: Physical, Vol. 161, No. 1–2, 297-304, 2010.
doi:10.1016/j.sna.2010.04.037 Google Scholar
16. Bouchebout, S., A. Bolopion, J. O. Abrahamians, and S. Regnier, "An overview of multiple DoF magnetic actuated micro-robots," Journal of Micro-Nano Mechatronics, Vol. 7, No. 4, 97-113, 2012.
doi:10.1007/s12213-012-0048-y Google Scholar
17. Kummer, M. P., J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul, and B. J. Nelson, "Octomag: An electromagnetic system for 5-DOF wireless micromanipulation," IEEE Transactions on Robotics, Vol. 26, No. 6, 1006-1017, 2010.
doi:10.1109/TRO.2010.2073030 Google Scholar
18. Byun, D., J. Choi, K. Cha, J. O. Park, and S. Park, "Swimming microrobot actuated by two pairs of Helmholtz coils system," Mechatronics, Vol. 21, No. 1, 357-364, 2011.
doi:10.1016/j.mechatronics.2010.09.001 Google Scholar
19. Jeong, S., H. Choi, J. Choi, C. Yu, J. oh Park, and S. Park, "Novel Electromagnetic Actuation (EMA) method for 3-dimensional locomotion of intravascular microrobot," Sensors and Actuators, A: Physical, Vol. 157, No. 1, 118-125, 2010.
doi:10.1016/j.sna.2009.11.011 Google Scholar
20. Choi, H., J. Choi, S. Jeong, C. Yu, J. O. Park, and S. Park, "Two-dimensional locomotion of a microrobot with a novel stationary electromagnetic actuation system," Smart Materials and Structures, Vol. 18, No. 11, 115017, 2009.
doi:10.1088/0964-1726/18/11/115017 Google Scholar
21. Choi, H., J. Choi, G. Jang, J. O. Park, and S. Park, "Two-dimensional actuation of a microrobot with a stationary two-pair coilsystem," Smart Materials and Structures, Vol. 18, No. 5, 055007, 2009.
doi:10.1088/0964-1726/18/5/055007 Google Scholar
22. Kee, H., H. Lee, H. Choi, and S. Park, "Analysis of drivable area and magnetic force in quadrupole electromagnetic actuation system with movable cores," Measurement, Vol. 161, 107878, 2020.
doi:10.1016/j.measurement.2020.107878 Google Scholar
23. Okada, T., S. Guo, N. Xiao, F. Qiang, and Y. Yamauchi, "Control of the wireless microrobot with multi-DOFs locomotion for medical applications," 2012 IEEE International Conference on Mechatronics and Automation ICMA, 2405-2410, 2012.
doi:10.1109/ICMA.2012.6285722 Google Scholar
24. Li, D., F. Niu, J. Li, X. Li, and D. Sun, "Gradient-enhanced electromagnetic actuation system with a new core shape design for microrobot manipulation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4700-4710, 2020.
doi:10.1109/TIE.2019.2928283 Google Scholar
25. Ko, Y., S. Na, Y. Lee, K. Cha, S. Y. Ko, J. Park, and S. Park, "A jellyfish-like swimming mini-robot actuated by an electromagnetic actuation system," Smart Materials and Structures, Vol. 21, No. 5, 057001, 2012.
doi:10.1088/0964-1726/21/5/057001 Google Scholar
26. Fu, Q., S. Guo, and J. Guo, "Conceptual design of a novel magnetically actuated hybrid microrobot," 2017 IEEE International Conference on Mechatronics and Automation, ICMA, 1001-1005, 2017.
doi:10.1109/ICMA.2017.8015953 Google Scholar
27. Yesin, K. B., K. Vollmers, and B. J. Nelson, "Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields," International Journal of Robotics Research, Vol. 25, No. 5–6, 527-536, 2006.
doi:10.1177/0278364906065389 Google Scholar
28. Shiri, A. and A. Shoulaie, "A new methodology for magnetic force calculations between planar spiral coils," Progress In Electromagnetics Research, Vol. 95, 39-57, 2009.
doi:10.2528/PIER09031608 Google Scholar
29. Marino, H., C. Bergeles, and B. J. Nelson, "Robust electromagnetic control of microrobots under force and localization uncertainties," IEEE Transactions on Automation Science and Engineering, Vol. 11, No. 1, 310-316, 2014.
doi:10.1109/TASE.2013.2265135 Google Scholar
30. Wang, L. F., M. Dkhil, A. Bolopion, P. Rougeot, S. Regnier, and M. Gauthier, "Simulation and experiments on magnetic microforces for magnetic microrobots applications," 2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale 3M-NANO, 15-20, 2013.
doi:10.1109/3M-NANO.2013.6737411 Google Scholar
31. Ivan, I. A., G. Hwang, J. Agnus, and M. Rakotondrabe, "First experiments on MagPieR: A planar wireless magnetic and piezoelectric microrobot," 2011 IEEE International Conference on Robotics and Automation Shanghai International Conference Center, 102-108, 2011.
doi:10.1109/ICRA.2011.5979885 Google Scholar
32. Keuning, J. D., J. D. Vriesy, L. Abelmanny, and S. Misra, "Image-based magnetic control of paramagnetic microparticles in water," 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 421-426, 2011. Google Scholar
33. Beleggia, M., M. D. Graef, and Y. T. Millev, "The equivalent ellipsoid of a magnetized body," Journal of Physics D: Applied Physics, Vol. 39, No. 5, 891-899, 2006.
doi:10.1088/0022-3727/39/5/001 Google Scholar