1. Jackson, D. R. and A. A. Oliner, "Leaky-wave antennas," Modern Antenna Handbook, Chap. 7, C. A. Balanis, ed., Wiley, New Jersey, NJ, USA, 2008. Google Scholar
2. Oliner, A. A. and D. R. Jackson, "Leaky-wave antennas," Antenna Engineering Handbook, 4th Edition, Chap. 11, J. L. Volakis, ed., McGraw-Hill, NY, USA, 2007. Google Scholar
3. Che, W., D. Wang, K. Deng, and Y. L. Chow, "Leakage and ohmic losses investigation in substrate-integrated waveguide," Radio Science, Vol. 42, No. 5, 1-8, Oct. 2007. Google Scholar
4. Xu, F., K. Wu, and X. Zhang, "Periodic leaky-wave antenna for millimeter wave applications based on substrate integrated waveguide," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 340-347, 2010.
doi:10.1109/TAP.2009.2026593 Google Scholar
5. Monticone, F. and A. Alu, "Leaky-wave theory, techniques, and applications: From microwaves to visible frequencies," Proceedings of the IEEE, Vol. 103, No. 5, 793-821, May 2015.
doi:10.1109/JPROC.2015.2399419 Google Scholar
6. Liu, J., D. R. Jackson, and Y. Long, "Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 20-29, Jan. 2012.
doi:10.1109/TAP.2011.2167910 Google Scholar
7. Oseen, C. W., "The theory of liquid crystals," Trans. Faraday Soc., Vol. 29, 883-898, 1933.
doi:10.1039/tf9332900883 Google Scholar
8. Frank, F. C., "On the theory of liquid crystals," Discussions of the Faraday Soc., Vol. 25, 19-28, 1958.
doi:10.1039/df9582500019 Google Scholar
9. Kuki, T., H. Fujikake, H. Kamoda, and T. Nomoto, "Microwave variable delay line using a membrane impregnated with liquid crystal," 2002 IEEE MTT-S International Microwave Symposium Digest, 363-366, Seattle, WA, USA, 2002. Google Scholar
10. Kuki, T., H. Fujikake, and T. Nomoto, "Microwave variable delay line using dual frequency switching-mode," IEEE Trans. Microw. Theory Tech., Vol. 50, 2604-2609, Nov. 2002. Google Scholar
11. Dolphi, D., M. Labeyrie, P. Joffre, and J. P. Huignard, "Liquid crystal microwave phase shifter," Electronic Lett., Vol. 29, No. 10, 926-928, May 1993.
doi:10.1049/el:19930618 Google Scholar
12. Weil, C., S. Muller, P. Scheele, Y. Kryvoshapka, G. Lussem, P. Best, and R. Jakoby, "Ferroelectric-and liquid crystal-tunable microwave phase shifters," 3rd Europ. Micr. Conf., 1431-1434, 2003. Google Scholar
13. Guo, Z., Y. Liu, T. Yang, Lei, D. Jiang, B. Gan, and W. Cao, "Tunable substrate integrated waveguide bandpass filter using liquid crystal material," 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 763-765, 2016.
doi:10.1109/ISAPE.2016.7834097 Google Scholar
14. Ding, C., F. Meng, H. Mu, J. Qiao, C. Zhao, Q. Yuan, and Q. Wu, "Design of a filtering tunable liquid crystal phase shifter based on coplanar waveguide and split-ring resonators," Liquid Crystals, Vol. 46, No. 15, 2127-2133, May 2019.
doi:10.1080/02678292.2019.1613691 Google Scholar
15. Martin, N., P. Laurent, C. Person, P. Gelin, and F. Hubert, "Patch antenna adjustable in frequency using liquid crystal," IEEE 33rd Eur. Microw. Conf., 699-702, Munich, Germany, 2003.
doi:10.1109/EUMC.2003.177573 Google Scholar
16. Bose, R. and A. Sinha, "Tunable patch antenna using liquid crystal substrate," 2008 IEEE Radar Conference, 1-6, Rome, Italy, 2008. Google Scholar
17. Shetta, A. and S. F. Mahmouh, "A widely tunable compact patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 7, 40-42, 2008.
doi:10.1109/LAWP.2008.915796 Google Scholar
18. Missaoui, S. and M. Kaddour, "Tunable microstrip patch antenna based on liquid crystals," 2016 XXIst International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 88-91, Tbilisi, 2016. Google Scholar
19. Polycarpou, A. C., M. A. Christou, and C. N. Papanicolaou, "Tunable patch antenna printed on a biased nematic liquid crystal cell," IEEE Trans. Antennas Propag., Vol. 62, No. 10, 4980-4987, Oct. 2014.
doi:10.1109/TAP.2014.2344099 Google Scholar
20. Prasetiadi, A. E., O. H. Karabey, et al. "Constinuously tunable substrate integrated waveguide band pass filter in liquid crystal technology with magnetic biasing," Electronic Lett., Vol. 51, No. 20, 1584-1585, 2015.
doi:10.1049/el.2015.2494 Google Scholar
21. Li, X., D. Jiang, and H. Yu, "Electrical biasing substrate integrated waveguide tunable band pass filter with liquid crystal technology," Optik, Vol. 14, 718-723, 2017.
doi:10.1016/j.ijleo.2017.05.005 Google Scholar
22. Fu, Z., D. Jiong, and Y. Liu, "Miniaturized pattern reconfigurable hmsiw leaky-wave antenna based on liquid crystal tuning technology in millimeter wave band," 2019 IEEE MTT-S International Wireless Symposium (IWS), 1-3, Guangzhou, China, 2019. Google Scholar
23. Tchema, R. B. and A. C. Polycarpou, "Quasi-periodic leaky-wave antenna based on substrate integrated waveguide and liquid crystal technologies," 14th European Conference on Antennas and Propagation (EuCAP), 1-5, Copenhagen, Denmark, 2020. Google Scholar
24. Bozzi, M., M. Pasian, L. Perregrini, and K.Wu, "On the losses in substrate integrated waveguides," 37th Eur. Microw. Conf., 384-387, 2007. Google Scholar
25. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristic of substrate integrated rectangular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 9, 333-335, Sept. 2002.
doi:10.1109/LMWC.2002.803188 Google Scholar
26. Deslandes, W. and K. Wu, "Substrate integrated waveguide leaky-wave antenna: Concept and design considerations," Proc. Asia-Pacific Microwave Conf. (APMC), Suzhou, China, 2005. Google Scholar
27. Collings, P. J. and M. Hird, Introduction to Liquid Crystals: Chemistry and Physics, 1st Ed., Taylor and Francis, CRC Press, 1997.
doi:10.4324/9780203211199
28. Khoo, I., Liquid Crystals, 2nd Ed., Wiley, 2007.
doi:10.1002/0470084030