Vol. 107
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-11-25
Dual-Band Multi-Port Rectenna for RF Energy Harvesting
By
Progress In Electromagnetics Research C, Vol. 107, 17-31, 2021
Abstract
In this article, a novel dual-band multi-port compact rectenna design for RF energy harvesting is proposed. An E-shaped coaxial fed microstrip antenna combined with an inverted L-shaped structure is used to achieve a dual-band operation at 0.9 GHz (GSM900) and 2.4 GHz (WiFi) frequency bands with gains of 0.8 dBi and 4.4 dBi, respectively. A shorting post is incorporated in the design, which restricts the antenna size to 50 mm x 47 mm, making the overall rectenna compatible with any sensor nodes. Further, a compact rectifier circuit covering both the frequency bands is designed to obtain a conversion efficiency up to 50% for an input power as low as -20 dBm. The matching circuit ensures that the nonlinear impedance of the rectifier matches with that of the antenna under varying operating conditions. Finally, the rectennas designed are combined and arranged together to form a cubical structure to produce an output voltage as large as 0.5 V for an input power of -20 dBm. With 360˚ coverage and orthogonal polarization reception, the cubical antenna arrangement ensures improved harvesting efficiency making the proposed design suitable for powering low power IoT devices.
Citation
Sleebi Divakaran, Deepti Krishna, Nasimuddin, and Jobin K. Antony, "Dual-Band Multi-Port Rectenna for RF Energy Harvesting," Progress In Electromagnetics Research C, Vol. 107, 17-31, 2021.
doi:10.2528/PIERC20100802
References

1., https://www.idtechex.com/events/presentations/energyharvesting devices-replace-batteries-in-iot-sensors-005771.asp. Accessed 14 September, 2019.
doi:10.1109/MCAS.2015.2510198

2. Soyatta, T., L. Copeland, and W. Heinzalman, "RF energy harvesting for embedded systems: A survey of trade-offs and methodology," IEEE Circuits Systems Magazine, Vol. 16, No. 1, 22-57, 2016.
doi:10.1109/COMST.2014.2368999        Google Scholar

3. Lu, X., P .Wang, D. Niyato, D. I. Kim, and Z. Han, "Wireless networks with RF energy harvesting: A contemporary survey," IEEE Communications Survey & Tutorials, Vol. 17, No. 2, 757-789, 2014.        Google Scholar

4. Brown, W. C., "The microwave powered helicopter," Journal of Microwave Power and Electromagnetic Energy, 1-20, 1966.        Google Scholar

5. Kraus, J. D., et al., "Antennas and Wave Propagation," Tata McGraw-Hill Education, 2006.
doi:10.1109/TMTT.2006.871362        Google Scholar

6. Ren, Y. J. and K. Chang, "5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission," IEEE Trans. Microwave Theory Techniques, Vol. 54, No. 4, 1495-1502, 2006.
doi:10.1109/TMTT.2003.810137        Google Scholar

7. Strassner, B. and K. Chang, "5.8-GHz circularly polarized dual-rhombic loop traveling-wave rectifying antenna for low power-density wireless power transmission applications," IEEE Trans. Microwave Theory Techniques, Vol. 51, No. 5, 1548-1553, 2003.
doi:10.1109/22.739282        Google Scholar

8. McSpadden, J. O., F. Lu, and K. Chang, "Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna," IEEE Trans. Microwave Theory Techniques, Vol. 46, No. 12, 2053-2060, 1998.
doi:10.1109/TAP.2003.812252        Google Scholar

9. Strassner, B. and K. Chang, "Highly efficient C-band circularly polarized rectifying antenna array for wireless microwave power transmission," IEEE Transactions Antennas and Propag., Vol. 51, No. 6, 1347-1356, 2003.
doi:10.1049/iet-map.2016.0300        Google Scholar

10. Mimis, K., D. R. Gibbins, S. Dumanli, and G. T. Watkins, "The ant and the elephant: ambient RF harvesting from the uplink," IET Microwaves, Antennas & Propagation, Vol. 11, No. 3, 386-393, 2017.        Google Scholar

11. Visser, H. J., A. C. F. Reniers, and J. A. C. Theeuwes, "Ambient RF energy scavenging: GSM and WLAN power density measurements," 38th European Microwave Conference, Amsterdam, Netherlands, 2008.
doi:10.1109/TMTT.2014.2364830        Google Scholar

12. Niotaki, K., A. Georgiadis, A. Collado, and J. S. Vardakas, "Dualband resistance compression networks for improved rectifier performance," IEEE Trans. Microwave Theory Techniques, Vol. 62, No. 12, 3512-3521, 2014.        Google Scholar

13. Arrawatia, M., M. S. Baghini, and G. Kumar, "RF energy harvesting system from cell towers in 900 MHz band," IEEE National Conference on Communications (NCC), Bangalore, India, 2011.        Google Scholar

14. Sun, H., Y. X. Guo, M. He, and Z. Zhong, "Design of a highefficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 929-932, 2012.
doi:10.1109/TAP.2015.2399939        Google Scholar

15. Arrawatia, M., M. S. Baghini, and G. Kumar, "Differential microstrip antenna for RF energy harvesting," IEEE Trans. on Antennas & Propagation, Vol. 63, No. 4, 1581-1588, 2015.
doi:10.1109/TMTT.2019.2906598        Google Scholar

16. Shen, S., Y. Zhang, C. Y. Chiu, and R. D. Murch, "An ambient RF energy harvesting system where the number of antenna ports is dependent on frequency," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 9, 3821-3832, 2019.        Google Scholar

17. Bahal, I. J. and P. Bhartia, Microstrip Antennas, Artech House, 1980.

18. Shen, S., C. Y. Chiu, and R. D. Murch, "A broadband L-probe microstrip patch rectenna for ambient RF energy harvesting," IEEE International Symposium on Antennas and Propagation USNC/URSI, 2017.
doi:10.1109/TMTT.2004.823585        Google Scholar

19. Hagerty, J. A., F. B. Helmbrecht, W. H. McCalpin, R. Zane, and Z. B. Popovic, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 1014-1024, 2004.
doi:10.1109/TAP.2017.2786320        Google Scholar

20. Shen, S., C. Y. Chiu, and D. Murch, "Multiport pixel rectenna for ambient RF energy harvesting," IEEE Trans. on Antennas & Propagn., Vol. 66, No. 2, 644-656, 2018.        Google Scholar

21. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley International, 2011.

22., https: ==en:wikipedia:org=wiki=Stub (electronics).

23. Divakaran, S. K., D. D. Krishna, and Nasimuddin, "RF energy harvesting systems: An overview and design issues," International Journal of RF and Microwave Computer Aided Engineering, Vol. 29, No. 1, 1-9, 2018.
doi:10.1109/TMTT.2015.2416233        Google Scholar

24. Kuhn, V., C. Lahuec, F. Seguin, and C. Person, "A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%," IEEE Transactions on Microwave Theory Techniques, Vol. 63, No. 5, 1768-1778, May 2015.
doi:10.1109/LAWP.2013.2272873        Google Scholar

25. Sun, H., Y. X. Guo, M. He, and Z. Zhong, "A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting," IEEE Antennas Wireless Propagation Letters, Vol. 12, 918-921, 2013.        Google Scholar

26. Munir, S. W., O. Amjad, E. Zeydan, and A. O. Ercan, "Optimization and analysis of WLAN RF energy harvesting system architecture," International Symposium on Wireless Communication Systems (ISWCS), Poznam, 2016.        Google Scholar

27. Zhu, L., J. Zhang, W. Han, L. Xu, and X. Bai, "A novel RF energy harvesting cube based on air dielectric antenna arrays," International Journal of RF and Microwave Computer Aided Engineering, Vol. 29, No. 1, 2018.        Google Scholar