1., https://www.idtechex.com/events/presentations/energyharvesting devices-replace-batteries-in-iot-sensors-005771.asp. Accessed 14 September, 2019.
doi:10.1109/MCAS.2015.2510198
2. Soyatta, T., L. Copeland, and W. Heinzalman, "RF energy harvesting for embedded systems: A survey of trade-offs and methodology," IEEE Circuits Systems Magazine, Vol. 16, No. 1, 22-57, 2016.
doi:10.1109/COMST.2014.2368999 Google Scholar
3. Lu, X., P .Wang, D. Niyato, D. I. Kim, and Z. Han, "Wireless networks with RF energy harvesting: A contemporary survey," IEEE Communications Survey & Tutorials, Vol. 17, No. 2, 757-789, 2014. Google Scholar
4. Brown, W. C., "The microwave powered helicopter," Journal of Microwave Power and Electromagnetic Energy, 1-20, 1966. Google Scholar
5. Kraus, J. D., et al., "Antennas and Wave Propagation," Tata McGraw-Hill Education, 2006.
doi:10.1109/TMTT.2006.871362 Google Scholar
6. Ren, Y. J. and K. Chang, "5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission," IEEE Trans. Microwave Theory Techniques, Vol. 54, No. 4, 1495-1502, 2006.
doi:10.1109/TMTT.2003.810137 Google Scholar
7. Strassner, B. and K. Chang, "5.8-GHz circularly polarized dual-rhombic loop traveling-wave rectifying antenna for low power-density wireless power transmission applications," IEEE Trans. Microwave Theory Techniques, Vol. 51, No. 5, 1548-1553, 2003.
doi:10.1109/22.739282 Google Scholar
8. McSpadden, J. O., F. Lu, and K. Chang, "Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna," IEEE Trans. Microwave Theory Techniques, Vol. 46, No. 12, 2053-2060, 1998.
doi:10.1109/TAP.2003.812252 Google Scholar
9. Strassner, B. and K. Chang, "Highly efficient C-band circularly polarized rectifying antenna array for wireless microwave power transmission," IEEE Transactions Antennas and Propag., Vol. 51, No. 6, 1347-1356, 2003.
doi:10.1049/iet-map.2016.0300 Google Scholar
10. Mimis, K., D. R. Gibbins, S. Dumanli, and G. T. Watkins, "The ant and the elephant: ambient RF harvesting from the uplink," IET Microwaves, Antennas & Propagation, Vol. 11, No. 3, 386-393, 2017. Google Scholar
11. Visser, H. J., A. C. F. Reniers, and J. A. C. Theeuwes, "Ambient RF energy scavenging: GSM and WLAN power density measurements," 38th European Microwave Conference, Amsterdam, Netherlands, 2008.
doi:10.1109/TMTT.2014.2364830 Google Scholar
12. Niotaki, K., A. Georgiadis, A. Collado, and J. S. Vardakas, "Dualband resistance compression networks for improved rectifier performance," IEEE Trans. Microwave Theory Techniques, Vol. 62, No. 12, 3512-3521, 2014. Google Scholar
13. Arrawatia, M., M. S. Baghini, and G. Kumar, "RF energy harvesting system from cell towers in 900 MHz band," IEEE National Conference on Communications (NCC), Bangalore, India, 2011. Google Scholar
14. Sun, H., Y. X. Guo, M. He, and Z. Zhong, "Design of a highefficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 929-932, 2012.
doi:10.1109/TAP.2015.2399939 Google Scholar
15. Arrawatia, M., M. S. Baghini, and G. Kumar, "Differential microstrip antenna for RF energy harvesting," IEEE Trans. on Antennas & Propagation, Vol. 63, No. 4, 1581-1588, 2015.
doi:10.1109/TMTT.2019.2906598 Google Scholar
16. Shen, S., Y. Zhang, C. Y. Chiu, and R. D. Murch, "An ambient RF energy harvesting system where the number of antenna ports is dependent on frequency," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 9, 3821-3832, 2019. Google Scholar
17. Bahal, I. J. and P. Bhartia, Microstrip Antennas, Artech House, 1980.
18. Shen, S., C. Y. Chiu, and R. D. Murch, "A broadband L-probe microstrip patch rectenna for ambient RF energy harvesting," IEEE International Symposium on Antennas and Propagation USNC/URSI, 2017.
doi:10.1109/TMTT.2004.823585 Google Scholar
19. Hagerty, J. A., F. B. Helmbrecht, W. H. McCalpin, R. Zane, and Z. B. Popovic, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 1014-1024, 2004.
doi:10.1109/TAP.2017.2786320 Google Scholar
20. Shen, S., C. Y. Chiu, and D. Murch, "Multiport pixel rectenna for ambient RF energy harvesting," IEEE Trans. on Antennas & Propagn., Vol. 66, No. 2, 644-656, 2018. Google Scholar
21. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley International, 2011.
22., https: ==en:wikipedia:org=wiki=Stub (electronics).
23. Divakaran, S. K., D. D. Krishna, and Nasimuddin, "RF energy harvesting systems: An overview and design issues," International Journal of RF and Microwave Computer Aided Engineering, Vol. 29, No. 1, 1-9, 2018.
doi:10.1109/TMTT.2015.2416233 Google Scholar
24. Kuhn, V., C. Lahuec, F. Seguin, and C. Person, "A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%," IEEE Transactions on Microwave Theory Techniques, Vol. 63, No. 5, 1768-1778, May 2015.
doi:10.1109/LAWP.2013.2272873 Google Scholar
25. Sun, H., Y. X. Guo, M. He, and Z. Zhong, "A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting," IEEE Antennas Wireless Propagation Letters, Vol. 12, 918-921, 2013. Google Scholar
26. Munir, S. W., O. Amjad, E. Zeydan, and A. O. Ercan, "Optimization and analysis of WLAN RF energy harvesting system architecture," International Symposium on Wireless Communication Systems (ISWCS), Poznam, 2016. Google Scholar
27. Zhu, L., J. Zhang, W. Han, L. Xu, and X. Bai, "A novel RF energy harvesting cube based on air dielectric antenna arrays," International Journal of RF and Microwave Computer Aided Engineering, Vol. 29, No. 1, 2018. Google Scholar