1. Guan, K., et al., "5-GHz obstructed vehicle-to-vehicle channel characterization for internet of intelligent vehicles," IEEE Internet of Things Journal, Vol. 6, No. 1, 100-110, Feb. 2019.
doi:10.1109/JIOT.2018.2872437 Google Scholar
2. Zhong, Z., et al., "A compact dual-band circularly polarized antenna with wide axial-ratio beamwidth for vehicle GPS satellite navigation application," IEEE Transactions on Vehicular Technology, Vol. 68, No. 9, 8683-8692, Sept. 2019.
doi:10.1109/TVT.2019.2920520 Google Scholar
3. Wang, Z., H. Liu, S.-J. Fang, and Y. Cao, "A low-cost dual-wideband active GNSS antenna with low-angle multipath mitigation for vehicle applications," Progress In Electromagnetics Research, Vol. 144, 281-289, 2014.
doi:10.2528/PIER13121205 Google Scholar
4. Schwarz, S., E. Zochmann, M. Muller, and K. Guan, "Dependability of directional millimeter wave vehicle-to-infrastructure communications," IEEE Access, Vol. 8, 53162-53171, 2020.
doi:10.1109/ACCESS.2020.2981166 Google Scholar
5. Ko, M., H. Lee, and J. Choi, "Planar LTE/sub-6GHz 5G MIMO antenna integrated with mmWave 5G beamforming phased array antennas for V2X applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 11, 1283-1295, 2020.
doi:10.1049/iet-map.2019.0849 Google Scholar
6. Sharma, A., et al., "Communication and networking technologies for UAVs: A survey," Journal of Network and Computer Applications, Vol. 168, 1-24, 2020. Google Scholar
7. Hassanien, A., M. G. Amin, E. Aboutanios, and B. Himed, "Dual-function radar communication systems: A solution to the spectrum congestion problem," IEEE Signal Processing Magazine, Vol. 36, No. 5, 115-126, Sept. 2019.
doi:10.1109/MSP.2019.2900571 Google Scholar
8. Xu, J., et al., "Wideband, low-profile patch array antenna with corporate stacked microstrip and substrate integrated waveguide feeding structure," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1368-1373, Feb. 2019.
doi:10.1109/TAP.2018.2883561 Google Scholar
9. Inomata, M., et al., "Transparent glass antenna for 28GHz and its signal reception characteristics in urban environment," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, Copenhagen, 2020. Google Scholar
10. Trujillo-Flores, J. I., et al., "CPW-fed transparent antenna for vehicle communications," Applied Sciences, Vol. 10, 1-11, 2020. Google Scholar
11. Desai, A., T. Upadhyaya, M. Palandoken, and C. Gocen, "Dual band transparent antenna for wireless MIMO system applications," Microwave and Optical Technology Letters, 1-12, 2019. Google Scholar
12. Boyuan, M., J. Pan, E. Wang, and Y. Luo, "Fixing and aligning methods for dielectric resonator antennas in K band and beyond," IEEE Access, Vol. 7, 12638-12646, 2019.
doi:10.1109/ACCESS.2019.2893443 Google Scholar
13. Chowdhury, R. and R. K. Chaudhary, "Investigation of new sectored hemispherical dielectric resonator antennas operating at TM101 and TE111 mode for circular polarization," Progress In Electromagnetics Research, Vol. 167, 95-109, 2020.
doi:10.2528/PIER20041601 Google Scholar
14. Sharma, A., G. Das, S. Gupta, and R. K. Gangwar, "Quad-band quad-sense circularly polarized dielectric resonator antenna for GPS/CNSS/WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 403-407, Mar. 2020.
doi:10.1109/LAWP.2020.2969743 Google Scholar
15. Yang, M., Y. Pan, Y. Sun, and K. Leung, "Wideband circularly polarized substrate-integrated embedded dielectric resonator antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 1145-1150, Feb. 2020.
doi:10.1109/TAP.2019.2938629 Google Scholar
16. Mazhar, W., D. M. Klymyshyn, G.Wells, A. A. Qureshi, M. Jacobs, and S. Achenbach, "Low-profile artificial grid dielectric resonator antenna arrays for mm-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4406-4417, Jul. 2019.
doi:10.1109/TAP.2019.2907610 Google Scholar
17. Keyrouz, S. and D. Caratelli, "Dielectric resonator antennas: Basic concepts, design guidelines, and recent developments at millimeter-wave frequencies," International Journal of Antennas and Propagation, Vol. 2016, 4406-4417, 2016. Google Scholar
18. Pan, Y. M., X. Qin, Y. X. Sun, and S. Y. Zheng, "A simple decoupling method for 5g millimeter-wave MIMO dielectric resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2224-2234, Apr. 2019.
doi:10.1109/TAP.2019.2891456 Google Scholar
19. Zhong, L., D. Zhou, R. Liu, X. Wang, and X. Meng, "The feasibility of coexistence between IMT-2020 and inter-satellite service in 26 GHz band," 2020 International Wireless Communications and Mobile Computing (IWCMC), 1006-1011, Limassol, 2020. Google Scholar
20. Jin, L., R. Lee, and I. Robertson, "A dielectric resonator antenna array using dielectric insular image guide," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 859-862, Feb. 2015.
doi:10.1109/TAP.2014.2382670 Google Scholar
21. Diawuo, H. A. and Y. Jung, "Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1286-1290, Jul. 2018.
doi:10.1109/LAWP.2018.2842242 Google Scholar
22. Ma, T., J. Ai, M. Shen, and W. T. Joines, "Design of novel broadband endfire dipole array antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2935-2938, 2017.
doi:10.1109/LAWP.2017.2753820 Google Scholar
23. Qasaymeh, Y. M., A. Almuhasien, and T. Kamran, "A compact wideband series linear dielectric resonator array antenna," Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 28, 394-403, 2020.
doi:10.3906/elk-1905-41 Google Scholar
24. Yi, H., L. Li, J. Han, and Y. Shi, "Traveling-wave series-fed patch array antenna using novel reflection-canceling elements for flexible beam," IEEE Access, Vol. 7, 111466-111476, 2019.
doi:10.1109/ACCESS.2019.2934652 Google Scholar