1. Rao, K. N. S., "GAGAN - The Indian satellite based augmentation system," Indian Journal of Radio & Space Physics, Vol. 36, 293-302, Aug. 2007. Google Scholar
2. Hager, B. H., R. W. King, and M. H. Murray, Measurement of Crustal Deformation Using the Global Positioning System, Vol. 19, 351, Annual Review of Earth and Planetary Sciences, 1991.
3. Sun, Y., R. Xue, D. Zhao, and D. Wang, "Radio frequency compatibility evaluation of S band navigation signals for future beidou," Sensors (Switzerland), Vol. 17, No. 5, 1039, May 2017, doi: 10.3390/s17051039.
doi:10.3390/s17051039 Google Scholar
4. Zhong, J., J. Lei, X. Dou, and X. Yue, "Assessment of vertical TEC mapping functions for space-based GNSS observations," GPS Solut., Vol. 20, No. 3, 353-362, Jul. 2016, doi: 10.1007/s10291-015-0444-6.
doi:10.1007/s10291-015-0444-6 Google Scholar
5. Ratnam, D. V., T. R. Vishnu, and P. B. S. Harsha, "Ionospheric gradients estimation and analysis of S-band navigation signals for NAVIC system," IEEE Access, Vol. 6, 66954-66962, 2018, doi: 10.1109/ACCESS.2018.2876795.
doi:10.1109/ACCESS.2018.2876795 Google Scholar
6. Schaer, S., "Mapping and predicting the earth's ionosphere using the Global Positioning System," Diss. Astron. Inst., 205, 1999, [online], available: https://www.researchgate.net/publication/252260542_Mapping_and_Predicting_the_Earth's_Ionos-phere_Using_the_Global_Positioning_System. Google Scholar
7. Radicella, S. M., B. Nava, P. Coïsson, L. Kersley, and G. J. Bailey, "Effects of gradients of the electron density on Earth-space communications," Ann. Geophys., Vol. 47, No. 2-3 suppl., 1227-1246, 2004, doi: 10.4401/ag-3296. Google Scholar
8. Bates, D. R., The Propagation of Radio Waves, Vol. 34, No. 6, K. G. Budden Cambridge University Press, 1985.
9. Abe, O. E., X. Otero Villamide, C. Paparini, S. M. Radicella, and B. Nava, "Analysis of a grid ionospheric vertical delay and its bounding errors overWest African sub-Saharan region," J. Atmos. Solar-Terrestrial Phys., Vol. 154, 67-74, Feb. 2017, doi: 10.1016/j.jastp.2016.12.015.
doi:10.1016/j.jastp.2016.12.015 Google Scholar
10. Hernández-Pajares, M., et al. "The ionosphere: Effects, GPS modeling and the benefits for space geodetic techniques," J. Geod., Vol. 85, No. 12, 887-907, 2011, doi: 10.1007/s00190-011-0508-5.
doi:10.1007/s00190-011-0508-5 Google Scholar
11. Jiang, H., Z. Wang, J. An, J. Liu, N. Wang, and H. Li, "Influence of spatial gradients on ionospheric mapping using thin layer models," GPS Solut., Vol. 22, No. 1, Jan. 2018, doi: 10.1007/s10291-017-0671-0.
doi:10.1007/s10291-017-0671-0 Google Scholar
12. Mannucci, A. J., B. D. Wilson, D. N. Yuan, C. H. Ho, U. J. Lindqwister, and T. F. Runge, "A global mapping technique for GPS-derived ionospheric total electron content measurements," Radio Sci., Vol. 33, No. 3, 565-582, 1998, doi: 10.1029/97RS02707.
doi:10.1029/97RS02707 Google Scholar
13. Klobuchar, J. A., "Ionospheric time-delay algorithm for single-frequency GPS users," IEEE Trans. Aerosp. Electron. Syst., Vol. 23, No. 3, 325-331, 1987, doi: 10.1109/TAES.1987.310829.
doi:10.1109/TAES.1987.310829 Google Scholar
14. Walter, T., et al. "Robust detection of ionospheric irregularities," Navig. J. Inst. Navig., Vol. 48, No. 2, 89-100, 2001, doi: 10.1002/j.2161-4296.2001.tb00231.x.
doi:10.1002/j.2161-4296.2001.tb00231.x Google Scholar
15. Ruffini, G., A. Flores, and A. Rius, "GPS tomography of the ionospheric electron content with a correlation functional," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 1, 143-153, 1998, doi: 10.1109/36.655324.
doi:10.1109/36.655324 Google Scholar
16. Wen, D., Y. Yuan, J. Ou, K. Zhang, and K. Liu, "A hybrid reconstruction algorithm for 3-D ionospheric tomography," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 6, 1733-1739, 2008, doi: 10.1109/TGRS.2008.916466.
doi:10.1109/TGRS.2008.916466 Google Scholar
17. Shukla, A. K., M. R. Sivaraman, and K. Bandyopadhyay, "A comparison study of voxel based multi- and two-layer ionospheric tomography models over the indian region using GPS data," Int. J. Remote Sens., Vol. 31, No. 10, 2535-2549, 2010, doi: 10.1080/01431160903019296.
doi:10.1080/01431160903019296 Google Scholar
18. Shukla, A. K., S. Das, N. Nagori, M. R. Sivaraman, and K. Bandyopadhyay, "Two-shell ionospheric model for Indian region: A novel approach," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 8, 2407-2412, 2009, doi: 10.1109/TGRS.2009.2017520.
doi:10.1109/TGRS.2009.2017520 Google Scholar
19. Komjathy, A., et al. "A new ionospheric model for wide area differential GPS?: The multiple shell approach," Network, 28-30, Jan. 2002. Google Scholar
20. Norsuzila, Y., M. Abdullah, and M. Ismail, "Determination of GPS total electron content using Single Layer Model (SLM) ionospheric mapping function," IJCSNS Int. J. Comput. Sci. Netw. Secur., Vol. 8, No. 9, 154-160, 2008, [online], available: http://paper.ijcsns.org/07_book/200809/20080922.pdf. Google Scholar
21. Tancredi, U., A. Renga, and M. Grassi, "Geometric total electron content models for topside ionospheric sounding," EESMS 2014 - 2014 IEEE Work. Environ. Energy Struct. Monit. Syst. Proc., 163-168, 2014, doi: 10.1109/EESMS.2014.6923285. Google Scholar
22. Niranjan, K., B. Srivani, S. Gopikrishna, and P. V. S. Rama Rao, "Spatial distribution of ionization in the equatorial and low-latitude ionosphere of the Indian sector and its effect on the pierce point altitude for GPS applications during low solar activity periods," J. Geophys. Res. Sp. Phys., Vol. 112, No. 5, 1-15, 2007, doi: 10.1029/2006JA011989. Google Scholar
23. Xiang, Y. and Y. Gao, "An enhanced mapping function with ionospheric varying height," Remote Sens., Vol. 11, No. 12, 1497, Jun. 2019, doi: 10.3390/rs11121497.
doi:10.3390/rs11121497 Google Scholar
24. Lanyi, G. E. and T. Roth, "A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations," Radio Sci., Vol. 23, No. 4, 483-492, 1988, doi: 10.1029/RS023i004p00483.
doi:10.1029/RS023i004p00483 Google Scholar
25. Hernàndez-Pajares , M., J. M. Juan, J. Sanz, and M. Garcia-Fernàndez, "Towards a more realistic ionospheric mapping function," XXVIII URSI Gen. Assem., Vol. 2002, 2002-2005, 2005. Google Scholar
26. Brunini, C., E. Camilion, and F. Azpilicueta, "Simulation study of the influence of the ionospheric layer height in the thin layer ionospheric model," J. Geod., Vol. 85, No. 9, 637-645, 2011, doi: 10.1007/s00190-011-0470-2.
doi:10.1007/s00190-011-0470-2 Google Scholar
27. Prasad, S. N. V. S., P. V. S. Rama Rao, D. S. V. V. D. Prasad, K. Venkatesh, and K. Niranjan, "On the variabilities of the Total Electron Content (TEC) over the Indian low latitude sector," Adv. Sp. Res., Vol. 49, No. 5, 898-913, 2012, doi: 10.1016/j.asr.2011.12.020.
doi:10.1016/j.asr.2011.12.020 Google Scholar
28. Acharya, R., et al. "Ionospheric studies for the implementation of GAGAN," Indian J. Radio Sp. Phys., Vol. 36, No. 5, 394-404, 2007. Google Scholar
29. Ratnam, D. V., J. R. K. K. Dabbakuti, and S. Sunda, "Modeling of ionospheric time delays based on a multishell spherical harmonics function approach," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 10, No. 12, 5784-5790, 2017, doi: 10.1109/JSTARS.2017.2743695.
doi:10.1109/JSTARS.2017.2743695 Google Scholar
30. Smith, D. A., E. A. Araujo-Pradere, C. Minter, and T. Fuller-Rowell, "A comprehensive evaluation of the errors inherent in the use of a two-dimensional shell for modeling the ionosphere," Radio Sci., Vol. 43, No. 6, n/a-n/a, 2008, doi: 10.1029/2007rs003769.
doi:10.1029/2007RS003769 Google Scholar
31. Maruyama, T., K. Hozumi, and G. Ma, "Ionospheric total electron content derived from gnss signals by double thin-shell model near the magnetic equator and implication in the meridional wind," 2019 Russ. Open Conf. Radio Wave Propagation, RWP 2019 - Proc., Vol. 1, No. 3, 139-140, 2019, doi: 10.1109/RWP.2019.8810250.
doi:10.1109/RWP.2019.8810250 Google Scholar
32. Sinha, S., R. Mathur, S. C. Bharadwaj, A. Vidyarthi, B. S. Jassal, and A. K. Shukla, "Estimation and smoothing of tec from navic dual frequency data," 2018 4th Int. Conf. Comput. Commun. Autom. ICCCA 2018, 1-5, 2018, doi: 10.1109/CCAA.2018.8777665. Google Scholar
33. Bhardwaj, S. C., A. Vidyarthi, B. S. Jassal, and A. K. Shukla, "Study of temporal variation of vertical TEC using NavIC data," 2017 International Conference on Emerging Trends in Computing and Communication Technologies, ICETCCT 2017, Vol. 2018-Janua, 1-5, 2018, doi: 10.1109/ICETCCT.2017.8280317. Google Scholar
34. Zaminpardaz, S., P. J. G. Teunissen, and N. Nadarajah, "IRNSS stand-alone positioning: First results in Australia," J. Spat. Sci., Vol. 61, No. 1, 5-27, 2016, doi: 10.1080/14498596.2016.1142398.
doi:10.1080/14498596.2016.1142398 Google Scholar
35. Bilitza, D., et al. "International reference ionosphere 2016: From ionospheric climate to real-time weather predictions," Sp. Weather, Vol. 15, No. 2, 418-429, 2017, doi: 10.1002/2016SW001593.
doi:10.1002/2016SW001593 Google Scholar
36. Venkatesh, K., P. V. S. R. Rao, D. S. V. V. D. Prasad, K. Niranjan, and P. L. Saranya, "Study of TEC, slab-thickness and neutral temperature of the thermosphere in the Indian low latitude sector," Ann. Geophys., Vol. 29, No. 9, 1635-1645, 2011, doi: 10.5194/angeo-29-1635-2011.
doi:10.5194/angeo-29-1635-2011 Google Scholar
37. Bagiya, M. S., H. P. Joshi, K. N. Iyer, M. Aggarwal, S. Ravindran, and B. M. Pathan, "TEC variations during low solar activity period (2005-2007) near the Equatorial Ionospheric Anomaly Crest region in India," Ann. Geophys., Vol. 27, 1047-1057, 2009.
doi:10.5194/angeo-27-1047-2009 Google Scholar
38. Bhardwaj, S. C., A. Vidyarthi, B. S. Jassal, and A. K. Shukla, "Estimation of temporal variability of differential instrumental biases of NavIC satellites and receiver using Kalman filter," Radio Sci., Jun. 2020, doi: 10.1029/2019RS006886. Google Scholar
39. Sunehra, D., "TEC and instrumental bias estimation of GAGAN station using Kalman filter and SCORE algorithm," Positioning, Vol. 7, No. 1, 41-50, 2016, doi: 10.4236/pos.2016.71004.
doi:10.4236/pos.2016.71004 Google Scholar
40. Kashcheyev, A., B. Nava, and S. M. Radicella, "Estimation of higher-order ionospheric errors in GNSS positioning using a realistic 3-D electron density model," Radio Sci., Vol. 47, No. 4, 1-7, 2012, doi: 10.1029/2011RS004976.
doi:10.1029/2011RS004976 Google Scholar