1. Rappaport, C. M., M. Kilmer, and E. Miller, "Accuracy considerations in using the PML ABC with FDFD Helmholtz equation computation," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 13, No. 5, 471-482, 2000.
doi:10.1002/1099-1204(200009/10)13:5<471::AID-JNM378>3.0.CO;2-A Google Scholar
2. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006 Google Scholar
3. Masumnia-Bisheh, K., K. Forooraghi, and M. Ghaffari-Miab, "Electromagnetic uncertainty analysis using stochastic FDFD method," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3268-3277, 2019.
doi:10.1109/TAP.2019.2896771 Google Scholar
4. Dong, Q. and C. M. Rappaport, "Microwave subsurface imaging using direct finite-difference frequency-domain-based inversion," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 11, 3664-3670, 2009.
doi:10.1109/TGRS.2009.2028740 Google Scholar
5. Sun, S., B. J. Kooij, and A. G. Yarovoy, "A linear model for microwave imaging of highly conductive scatterers," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 3, 1149-1164, 2017.
doi:10.1109/TMTT.2017.2772795 Google Scholar
6. Layek, M. K. and P. Sengupta, "Forward modeling of GPR data by unstaggered finite difference frequency domain (FDFD) method: An approach towards an appropriate numerical scheme," Journal of Environmental and Engineering Geophysics, Vol. 24, No. 3, 487-496, 2019.
doi:10.2113/JEEG24.3.487 Google Scholar
7. Masumnia-Bisheh, K. and C. Furse, "Bioelectromagnetic uncertainty analysis using geometrically stochastic FDFD method," IEEE Transactions on Antennas and Propagation, 2020, doi: 10.1109/TAP.2020.3025238. Google Scholar
8. Austin, A. C. M. and C. D. Sarris, "Efficient analysis of geometrical uncertainty in the FDTD method using polynomial chaos with application to microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 12, 4293-4301, 2013.
doi:10.1109/TMTT.2013.2281777 Google Scholar
9. Litvinenko, A., A. C. Yucel, H. Bagci, J. Oppelstrup, E. Michielssen, and R. Tempone, "Computation of electromagnetic fields scattered from objects with uncertain shapes using multilevel Monte Carlo method," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 37-50, 2019.
doi:10.1109/JMMCT.2019.2897490 Google Scholar
10. Edwards, R. S., A. C. Marvin, and S. J. Porter, "Uncertainty analyses in the finite-difference time-domain method," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 1, 155-163, Feb. 2010.
doi:10.1109/TEMC.2009.2034645 Google Scholar
11. Nguyen, B. T., A. Samimi, S. E. W. Vergara, C. D. Sarris, and J. J. Simpson, "Analysis of electromagnetic wave propagation in variable magnetized plasma via polynomial chaos expansion," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 438-449, 2018.
doi:10.1109/TAP.2018.2879676 Google Scholar
12. Nguyen, B. T., S. E. W. Vergara, C. D. Sarris, and J. J. Simpson, "Ionospheric variability effects on impulsive ELF antipodal propagation about the earth sphere," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 66, 6244-6254, 2018.
doi:10.1109/TAP.2018.2874478 Google Scholar
13. Gorniak, P., "An effective FDTD algorithm for simulations of stochastic EM fields in 5G frequency band," 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 1417-1421, Bologna, 2018. Google Scholar
14. Zygiridis, T., A. Papadopoulos, N. Kantartzis, C. Antonopoulos, E. N. Glytsis, and T. D. Tsiboukis, "Intrusive polynomial-chaos approach for stochastic problems with axial symmetry," IET Microwaves, Antennas and Propagation, Vol. 13, No. 6, 782-788, 2019.
doi:10.1049/iet-map.2018.5306 Google Scholar
15. Cheng, X., W. Shao, K. Wang, and B.-Z. Wang, "Uncertainty analysis in dispersive and lossy media for ground-penetrating radar modeling," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1931-1935, 2019.
doi:10.1109/LAWP.2019.2933777 Google Scholar
16. Liu, J., H. Li, and X. Xi, "General polynomial chaos-based expansion finite-difference time-domain method for analysing electromagnetic wave propagation in random dispersive media," IET Microwaves, Antennas and Propagation, Vol. 15, No. 2, 221-228, 2021.
doi:10.1049/mia2.12040 Google Scholar
17. Wang, K. C., Z. He, D. Z. Ding, and R. S. Chen, "Uncertainty scattering analysis of 3-D objects with varying shape based on method of moments," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2835-2840, 2019.
doi:10.1109/TAP.2019.2896456 Google Scholar
18. Xiu, D., "Efficient collocational approach for parametric uncertainty analysis," Communications in Computational Physics, Vol. 2, No. 2, 293-309, 2007. Google Scholar
19. Giraldi, L., A. Litvinenko, D. Liu, H. G. Matthies, and A. Nouy, "To be or not to be intrusive? The solution of parametric and stochastic equations - The plain vanilla Galerkin case," SIAM Journal on Scientific Computing, Vol. 36, No. 6, A2720-A2744, 2014.
doi:10.1137/130942802 Google Scholar
20. Austin, A. C. M., "Wireless channel characterization in burning buildings over 100-1000 MHz," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 3265-3269, 2016.
doi:10.1109/TAP.2016.2562671 Google Scholar
21. Xiu, D., Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, 2010.
22. Crestaux, T., O. Le Maıtre, and J.-M. Martinez, "Polynomial chaos expansion for sensitivity analysis," Reliability Engineering & System Safety, Vol. 94, No. 7, 1161-1172, 2009.
doi:10.1016/j.ress.2008.10.008 Google Scholar