Vol. 101
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-03-01
Resonator Based Antenna Sensor for Breast Cancer Detection
By
Progress In Electromagnetics Research M, Vol. 101, 149-159, 2021
Abstract
A compact ultra-wideband antenna is presented for detecting malignant cells in the breast. The dimension of the proposed circular resonator-based antenna is 20 mm x 30 mm x 1.6 mm. The antenna sensor operates within the 3.1 GHz to 6.8 GHz (105.71%) range with peak gain 4.8 dB, radiation efficiency 89.2%, and an omnidirectional radiation pattern. Three types of breast phantoms (i.e., phantom without tumor, a phantom with a single tumor, and phantom with two tumors) arealso fabricated. The electrical properties of the malignant cells differ from non-malignant breast cells. S-parameters have been measured with phantom, then with the help of Principal Component Analysis (PCA), and normal and malignant breast phantoms are identified. Further, the tumor's locations in the breast phantom are find out by using the specific absorption rate (SAR) values.
Citation
Praveen Kumar Rao, and Rajan Mishra, "Resonator Based Antenna Sensor for Breast Cancer Detection," Progress In Electromagnetics Research M, Vol. 101, 149-159, 2021.
doi:10.2528/PIERM21011103
References

1. Rao, P. K. and R. Mishra, "Elliptical shape flexible MIMO antenna with high isolation for breast cancer detection application," IETE Journal of Research, 1-9, 2020.
doi:10.1080/03772063.2020.1819887

2. Kahar, M., A. Ray, D. Sarkar, and P. P. Sarkar, "An UWB microstrip monopole antenna for breast tumor detection," Microwave and Optical Technology Letters, Vol. 57, No. 1, 49-54, 2015.
doi:10.1002/mop.28773

3. Islam, M. T., et al. "A low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array," Scientific Reports, Vol. 9, No. 1, 1-13, 2019.

4. Kuhl, C. K., et al. "Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer," Journal of Clinical Oncology, Vol. 23, No. 33, 8469-8476, 2005.
doi:10.1200/JCO.2004.00.4960

5. Elmore, J. G., et al. "Ten-year risk of false positive screening mammograms and clinical breast examinations," New England Journal of Medicine, Vol. 338, No. 16, 1089-1096, 1998.
doi:10.1056/NEJM199804163381601

6. Sachs, J., et al. "Differential ultra-wideband microwave imaging: Principle application challenges," Sensors, Vol. 18, No. 7, 2136, 2018.
doi:10.3390/s18072136

7. Islam, Md T., et al. "Microwave imaging based breast tumor detection using compact wide slotted UWB patch antenna," Optoelectron. Adv. Mater. Rapid Commun., Vol. 13, 448-457, 2019.

8. Rao, P. K., A. R. Yadav, and R. Mishra, "AMC-based antenna sensor for breast tumors detection," International Journal of Microwave and Wireless Technologies, 1-8, 2020.

9. Saeidi, T., et al. "Ultra-wideband elliptical patch antenna for microwave imaging of wood," International Journal of Microwave and Wireless Technologies, Vol. 11, No. 9, 948-966, 2019.
doi:10.1017/S1759078719000588

10. Rahman, M., et al. "Resonator based switching technique between ultra-wide band (UWB) and single/dual continuously tunable-notch behaviors in UWB radar for wireless vital signs monitoring," Sensors, Vol. 18, No. 10, 3330, 2018.
doi:10.3390/s18103330

11. Haider, Am., et al. "Time-domain investigation of switchable filter wide-band antenna for microwave breast imaging," Sensors, Vol. 20, No. 15, 4302, 2020.
doi:10.3390/s20154302

12. Nejatijahromi, M., M. Rahman, and M. Naghshvarianjahromi, "Continuously tunable WiMAX band-notched UWB antenna with fixed WLAN notched band," Progress In Electromagnetics Research Letters, Vol. 75, 97-103, 2018.
doi:10.2528/PIERL18010819

13. NejatiJahromi, M., M. NagshvarianJahromi, and M. Rahman, "A new compact planar antenna for switching between UWB, narrow band and UWB with tunable-notch behaviors for UWB and WLAN applications," Applied Computational Electromagnetics Society Journal, Vol. 33, No. 4, 400, 2018.

14. Rahman, M., W. T. Khan, and M. Imran, "Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR, CSRR, and DGS," AEU-International Journal of Electronics and Communications, Vol. 93, 116-122, 2018.
doi:10.1016/j.aeue.2018.06.010

15. Rahman, M., et al. "Bandwidth enhancement and frequency scanning array antenna using novel UWB filter integration technique for OFDM UWB radar applications in wireless vital signs monitoring," Sensors, Vol. 18, No. 9, 3155, 2018.
doi:10.3390/s18093155

16. Rahman, M., D.-S. Ko, and J.-D. Park, "A compact multiple notched ultra-wide band antenna with an analysis of the CSRR-TO-CSRR coupling for portable UWB applications," Sensors, Vol. 17, No. 10, 2174, 2017.
doi:10.3390/s17102174

17. Rahman, M., et al. "Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications," Electronics, Vol. 8, No. 2, 158, 2019.
doi:10.3390/electronics8020158

18. Rahman, M. and J.-D. Park, "The smallest form factor UWB antenna with quintuple rejection bands for IoT applications utilizing RSRR and RCSRR," Sensors, Vol. 18, No. 3, 911, 2018.
doi:10.3390/s18030911

19. Zhang, J., E. C. Fear, and R. H. Johnston, "Cross-Vivaldi antenna for breast tumor detection," Microwave and Optical Technology Letters, Vol. 51, No. 2, 275-280, 2009.
doi:10.1002/mop.24037

20. Islam, M. T., et al. "A negative index metamaterial-inspired UWB antenna with an integration of complementary SRR and CLS unit cells for microwave imaging sensor applications," Sensors, Vol. 15, No. 5, 11601-11627, 2015.
doi:10.3390/s150511601

21. Foroutan, F. and N. K. Nikolova, "Active sensor for microwave tissue imaging with bias-switched arrays," Sensors, Vol. 18, No. 5, 1447, 2018.
doi:10.3390/s18051447

22. Jafari, H. M., J. M. Deen, S. Hranilovic, and N. K. Nikolova, "Co-polarised and cross-polarised antenna arrays for breast, cancer detection," IET Microwaves, Antennas & Propagation, Vol. 1, No. 5, 1055-1058, 2007.
doi:10.1049/iet-map:20060327

23. Haider, A., et al. "Time-domain investigation of switchable filter wide-band antenna for microwave breast imaging," Sensors, Vol. 20, No. 15, 4302, 2020.
doi:10.3390/s20154302

24. Subramanian, S., B. Sundarambal, and D. Nirmal, "Investigation on simulation-based specific absorption rate in ultra-wideband antenna for breast cancer detection," IEEE Sensors Journal, Vol. 18, No. 24, 10002-10009, 2018.
doi:10.1109/JSEN.2018.2875621

25. Amdaouch, I., O. Aghzout, A. Naghar, A. V. Alejos, and F. J. Falcone, "Breast tumor detection system based on a compact UWB antenna design," Progress In Electromagnetics Research M, Vol. 64, 123-133, 2018.
doi:10.2528/PIERM17102404

26. Sharma, M. K., et al. "Experimental investigation of the breast phantom for tumor detection using ultra-wide band{MIMO antenna sensor (UMAS) probe," IEEE Sensors Journal, Vol. 20, No. 12, 6745-6752, 2020.
doi:10.1109/JSEN.2020.2977147

27. Rahman, M. and J. D. Park, "The smallest form factor UWB antenna with quintuple rejection bands for IoT applications utilizing RSRR and RCSRR," Sensors, Vol. 18, 911, 2018.
doi:10.3390/s18030911

28. Rahmana, M., W. T. Khana, and M. Imran, "Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR," CSRR, and DGS. Int. J. Electron. Commun., Vol. 93, 154-157, 2016.

29. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

30. Islam, Md T., et al. "Experimental breast phantoms for estimation of breast tumor using microwave imaging systems," IEEE Access, Vol. 6, 78587-78597, 2018.
doi:10.1109/ACCESS.2018.2885087