1. Jamshed, M., F. Heliot, and T. Brown, "A survey on electromagnetic risk assessment and evaluation mechanism for future wireless communication systems," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 4, No. 1, 24-36, 2020.
doi:10.1109/JERM.2019.2917766 Google Scholar
2. Genc, O., M. Bayrak, and E. Yaldiz, "Analysis of the effects of GSM bands to the electromagnetic pollution in the RF spectrum," Progress In Electromagnetics Research, Vol. 101, 17-32, 2010.
doi:10.2528/PIER09111004 Google Scholar
3. Bernardi, P., M. Caragnaro, S. Pisa, and E. Piuzzi, "Human exposure to radio base-station antennas in urban environment," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1996-2002, Nov. 2000. Google Scholar
4. Sardi, A., F. Alkurt, V. Özkaner, M. Karaaslan, E. Unal, and M. Taouzari, "Investigation of microwave power limiter for Industrial Scientific Medical band (ISM) applications," International Journal of RF and Microwave Computer-Aided Engineering, 30, 10.1002/mmce.22180, Mar. 2020. Google Scholar
5. Karaaslan, M., E. Unal, C. Sabah, O. Altintas, and O. Altintas, "Operating frequency reconfiguration study for a split ring resonator based microfluidic sensor," Journal of The Electrochemical Society, 167, 10.1149/1945-7111/abc656, Nov. 2020. Google Scholar
6. Mahmud, R., H. Nawzad, Y. Abdulkarim, M. Karaaslan, and M. Lancaster, "Filtering two-element waveguide antenna array based on solely resonators," AEU - International Journal of Electronics and Communications, Vol. 121, 1-7, 10.1016/j.aeue.2020.153232, Apr. 2020. Google Scholar
7. Aishwarya, V. M., M. Giridhar, and B. Suryasarathi, "Shape memory polyurethane nanocomposites with porous architectures for enhanced microwave shielding," Chemical Engineering Journal, Vol. 352, 590-600, 2018, ISSN 1385-8947. Google Scholar
8. Raveendran, A., M. Sebastian, and S. Raman, "Applications of microwave materials: A review," Journal of Electronic Materials, 10.1007/s11664-019-07049-1, 2019. Google Scholar
9. Guo, X. and M. Nan, "Assessment of the toxic potential of graphenefamily nanomaterials," Journal of Food and Drug Analysis, Vol. 22, 105-115, 2014.
doi:10.1016/j.jfda.2014.01.009 Google Scholar
10. Simón, J., J. Villanueva, I. A. Arriaga-Trejo, J. R. Flores-González, J. L. Alvarez-Flores, E. S. Hernández-Gómez, R. Piña, and J. Flores-Troncoso, "Evaluation of coir as microwave absorber," Microw. Opt. Technol. Lett., Vol. 58, 1450-1453, 2016.
doi:10.1002/mop.29828 Google Scholar
11. Yah, N. F. N., H. A. Rahim, Y. S. Lee, F. H. Wee, and H. H. Zainal, "Electromagnetic wave absorption properties of novel green composites coconut fiber coir and charcoal powder over X-band frequency for electromagnetic wave absorbing applications," Advanced Electromagnetics, Vol. 7, No. 1, 13-18, https://doi.org/10.7716/aem.v7i1.598, 2018.
doi:10.7716/aem.v7i1.598 Google Scholar
12. Nornikman, H., M. F. B. A. Malek, P. J. Soh, A. Abdullah Al-Hadi, F. H. Wee, and A. Hasnain, "Parametric study of pyramidal microwave absorber using rice husk," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010.
doi:10.2528/PIER10041003 Google Scholar
13. Rahmat, M. B., A. Z. Arfianto, E. Setijadi, and A. Mauludiyanto, "Test of microwave absorber of rice husk and burned rice husk," 2017 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA), 331-333, Surabaya, 2017. Google Scholar
14. Salleh, M. K. M., M. Yahya, Z. Awang, W. N. W. Muhamad, A. M. Mozi, and N. Yaacob, "Single layer coconut shell-based microwave absorbers," TENCON 2011 - 2011 IEEE Region 10 Conference, 1110-1113, Bali, 2011. Google Scholar
15. Abdulkarim, Y., L. Deng, H. Nawzad, F. Muhammadsharif, O. Altintas, M. Karaaslan, and H. Luo, "Design of a broadband coplanar waveguide-fed antenna incorporating organic solar cells with 100% insolation for Ku band satellite communication," Materials, Vol. 13, 10.3390/ma13010142, Dec. 2019. Google Scholar
16. Mishra, S., G. Nath, and P. Mishra, "Ultrasonically synthesized dielectric microwave absorbing material from coconut coir dust," Waste and Biomass Valorization, Vol. 11, 10.1007/s12649-018-0478-4, 2018. Google Scholar
17. http://www.sltmicrowave.com/datasheets/WEDGE%20MICROWAVE%20ABSORBERS.pdf.
18. Kumar, A., S. Sharma, and G. Singh, "Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies," Progress In Electromagnetics Research, Vol. 69, 47-54, 2007.
doi:10.2528/PIER06111204 Google Scholar
19. Sabouroux, P. and D. Ba, "Epsimu, a tool for dielectric properties measurement of porous media: Application in wet granular materials characterization," Progress In Electromagnetics Research B, Vol. 29, 191-207, 2011.
doi:10.2528/PIERB10112209 Google Scholar
20. Li, S., R. Chen, S. Anwar, W. Lu, Y. Lai, H. Chen, B. Hou, F. Ren, and B. Gu, "Applying effective medium theory in characterizing dielectric constant of solids," Progress In Electromagnetics Research Letters, Vol. 35, 145-153, 2012.
doi:10.2528/PIERL12072108 Google Scholar
21. Fan, Z., G. Luo, Z. Zhang, L. Zhou, and F. Wei, "Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites," Mater. Sci. Eng. B, Vol. 132, 85-89, 2006.
doi:10.1016/j.mseb.2006.02.045 Google Scholar
22. Kotsuka, Y., Electromagnetic Wave Absorbers Detailed Theories and Applications, 2nd Ed., 8-12, John Wiley & Sons, Inc., 2019.
doi:10.1002/9781119564430
23. Moulson, A. J. and J. M. Herbert, Electro Ceramics: Materials, Properties, Applications, 2nd Ed., Wiley, 2003.
24. Von Hippel, A. R., Dielectrics and Waves, Wiley, 1954.
25. Abubakarov, A. G., J. A. Reyzenkind, A. M. Lerer, A. B. Kleshenkov, M. B. Manuilov, and A. V. Pavlenko, "Method of experimental determining of the microwave absorbing properties of composite materials," Advanced Materials, Springer Proceedings in Physics, 193, 2017. Google Scholar
26. Kruppa, W., "An explicit solution for the scattering parameters of a linear two-port measured with an imperfect test set," IEEE Trans. on Micr. Theory and Tech., Vol. 19, 122-123, Jan. 1971.
doi:10.1109/TMTT.1971.1127466 Google Scholar
27. Marks, R. B., "A multiline method of network analyzer calibration," IEEE Trans. on Micr. Theory and Tech., Vol. 39, 1205-1215, Jul. 1991. Google Scholar
28. Fuh, K.-F., "Formulation for propagation factor extractions in thru-reflect-line/line-reflect-line calibrations and related applications," IEEE Trans. on Micr. Theory and Tech., Vol. 64, 1-13, 10.1109/TMTT.2016.2549009. Google Scholar
29. Liao, S. Y., Microwave Devices and Circuits, 3rd Ed., 344-379, Pearson Education, 2013.
30. Das Microwave Engineering, 3rd Ed., 322-346, McGraw Hill Education India Education, 2014.
31. https://www.cumingmicrowave.com/anechoic-chambers-application/ferrite-tile-absorber.html.
32. https://www.laird.com/rfmicrowave-absorbers-dielectrics/microwave-absorbing-foams/broadband-free-space-reflectivity-absorbers/ecc.
33. https://www.murata.com/en-sg/products/productdetail.aspx?partno=EA1075A270.
34. http://www.masttechnologies.com/products/rf-absorbers/mf1/mf11-0002-01-with-psa-backing/.