Vol. 104
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-09-19
A Novel Mirror Kirchhoff Approximation Method for Predicting the Shadowing Effect by a Metal Cuboid
By
Progress In Electromagnetics Research M, Vol. 104, 199-212, 2021
Abstract
This paper proposes an efficient and accurate scattered field prediction method based on Kirchhoff Approximation called `Mirror Kirchhoff Approximation' (MKA) which is suitable for evaluating the shadowing effect by a metal cuboid. The disadvantages of conventional methods, such as low accuracy of Kirchhoff Approximation (KA) for metal cuboid and high computational complexity of Method of Moment (MoM) for a shadowing object at millimeter wave (mmWave), have motivated the establishment of an efficient and accurate prediction method for a metal cuboid at mmWave. The proposed method solves the previous issues by introducing the ray-based reflection into conventional KA. The idea and detail formulations of the proposed method are presented. The proposed method is validated by comparing with MoM and KA in terms of complexity and accuracy. The results imply that the proposed method presents good accuracy with low calculation time. The MKA has a maximum 8.3 dB improvement compared with conventional KA. Calculating time is improved by 392-915 times compared with MoM.
Citation
Xin Du, Kentaro Saito, Jun-Ichi Takada, and Panawit Hanpinitsak, "A Novel Mirror Kirchhoff Approximation Method for Predicting the Shadowing Effect by a Metal Cuboid," Progress In Electromagnetics Research M, Vol. 104, 199-212, 2021.
doi:10.2528/PIERM21041306
References

1. ITU-R Use of the Frequency Band 66-71 GHz for International Mobile Telecommunications and Coexistence with Other Applications of the Mobile Service, WRC-19, 2019.

2. Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, "What will 5G be?," IEEE J-SAC, Vol. 32, No. 6, 1065-1082, June 2014.        Google Scholar

3. Rangan, S., T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proceedings of the IEEE, Vol. 102, No. 3, 366-385, Mar. 2014.
doi:10.1109/JPROC.2014.2299397        Google Scholar

4. MacCartney, G. R., S. Deng, S. Sun, and T. S. Rappaport, "Millimeter-wave human blockage at 73 GHz with a simple double knife-edge diffraction model and extension for directional antennas," Proc. IEEE VTC, 1-6, Montreal, QC, Sept. 2016.        Google Scholar

5. Csendes, Z. J. and P. Silvester, "Numerical solution of dielectric loaded waveguides: I-finite-element analysis," IEEE Trans. MTT, Vol. 18, No. 12, 1124-1131, Dec. 1970.
doi:10.1109/TMTT.1970.1127422        Google Scholar

6. Harrington, R. F., Field Computation by Moment Method, Macmillan, 1968.

7. Chew, W. C., J. M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetic, Artech House, 2001.

8. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media," IEEE Trans. AP, Vol. 14, No. 3, 302-307, Apr. 1966.        Google Scholar

9. Schuster, A., "An introduction to the theory of optics," Nature, Vol. 114, No. 2854, 48, 1924.        Google Scholar

10. Keller, J. B., "Geometric theory of diffraction," J.Opt.Soc.Am., Vol. 52, No. 2, 116-130, 1962.
doi:10.1364/JOSA.52.000116        Google Scholar

11. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, Nov. 1974.
doi:10.1109/PROC.1974.9651        Google Scholar

12. UFimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, 1-48, WILEY, 2013.

13. Kirchhoff, G., Zur Theorie der Lichtstrahlen, Vol. 254, No. 4, 663-695, Wiley, 1883.

14. UFimtsev, P. Y., "New insight into the classical macdonald physical optics approximation," IEEE Antennas and Propagation Magazine, Vol. 50, No. 3, 11-20, Jun. 2008.
doi:10.1109/MAP.2008.4563560        Google Scholar

15. Lam, P. T. C., S. W. Lee, and R. Acosta, "Secondary pattern computation of an arbitrarily shaped main reflector,", Lewis Research Center, Cleveland, Ohio, Nov. 1984.        Google Scholar

16. Osterman, A. and P. Ritosa, "Radio propagation calculation: A technique using 3D fresnel zones for decimeter radio waves on lidar data," IEEE TAP, Vol. 61, No. 6, 31-43, Dec. 2019.        Google Scholar

17. Queiroz, A. D. C. and L. C. Trintinalia, "An analysis of human body shadowing models for ray-tracing radio channel characterization," SBMO/IEEE MTT-S IMOC, Porto de Galinhas, 2015.        Google Scholar

18. Balanis, C. A., Advanced Engineering Electromagnetics, Chapter 6 and 7, Wiley, Hoboken, New Jersey, 2012.

19. Ludwig, A., "Computation of radiation patterns involving numerical double integration," IEEE TAP, Vol. 16, No. 6, 767-769, 1968.        Google Scholar

20. Balanis, C. A., Antenna Theory, 620-637, WILEY, 1997.

21. Kohama, T. and M. Ando, "Localization of radiation integrals using the fresnel zone numbers," IEICE TEE, Vol. 95, No. 5, 928-935, 2012.        Google Scholar

22. Yaghjian, A., "An overview of near-field antenna measurements," IEEE TAP, Vol. 34, No. 1, 30-45, Jan. 1986.        Google Scholar

23. Morita, N., N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics, Chapter 4, Artech House, Boston, 1990.