1. ITU-R Use of the Frequency Band 66-71 GHz for International Mobile Telecommunications and Coexistence with Other Applications of the Mobile Service, WRC-19, 2019.
2. Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, "What will 5G be?," IEEE J-SAC, Vol. 32, No. 6, 1065-1082, June 2014. Google Scholar
3. Rangan, S., T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proceedings of the IEEE, Vol. 102, No. 3, 366-385, Mar. 2014.
doi:10.1109/JPROC.2014.2299397 Google Scholar
4. MacCartney, G. R., S. Deng, S. Sun, and T. S. Rappaport, "Millimeter-wave human blockage at 73 GHz with a simple double knife-edge diffraction model and extension for directional antennas," Proc. IEEE VTC, 1-6, Montreal, QC, Sept. 2016. Google Scholar
5. Csendes, Z. J. and P. Silvester, "Numerical solution of dielectric loaded waveguides: I-finite-element analysis," IEEE Trans. MTT, Vol. 18, No. 12, 1124-1131, Dec. 1970.
doi:10.1109/TMTT.1970.1127422 Google Scholar
6. Harrington, R. F., Field Computation by Moment Method, Macmillan, 1968.
7. Chew, W. C., J. M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetic, Artech House, 2001.
8. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media," IEEE Trans. AP, Vol. 14, No. 3, 302-307, Apr. 1966. Google Scholar
9. Schuster, A., "An introduction to the theory of optics," Nature, Vol. 114, No. 2854, 48, 1924. Google Scholar
10. Keller, J. B., "Geometric theory of diffraction," J.Opt.Soc.Am., Vol. 52, No. 2, 116-130, 1962.
doi:10.1364/JOSA.52.000116 Google Scholar
11. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, Nov. 1974.
doi:10.1109/PROC.1974.9651 Google Scholar
12. UFimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, 1-48, WILEY, 2013.
13. Kirchhoff, G., Zur Theorie der Lichtstrahlen, Vol. 254, No. 4, 663-695, Wiley, 1883.
14. UFimtsev, P. Y., "New insight into the classical macdonald physical optics approximation," IEEE Antennas and Propagation Magazine, Vol. 50, No. 3, 11-20, Jun. 2008.
doi:10.1109/MAP.2008.4563560 Google Scholar
15. Lam, P. T. C., S. W. Lee, and R. Acosta, "Secondary pattern computation of an arbitrarily shaped main reflector,", Lewis Research Center, Cleveland, Ohio, Nov. 1984. Google Scholar
16. Osterman, A. and P. Ritosa, "Radio propagation calculation: A technique using 3D fresnel zones for decimeter radio waves on lidar data," IEEE TAP, Vol. 61, No. 6, 31-43, Dec. 2019. Google Scholar
17. Queiroz, A. D. C. and L. C. Trintinalia, "An analysis of human body shadowing models for ray-tracing radio channel characterization," SBMO/IEEE MTT-S IMOC, Porto de Galinhas, 2015. Google Scholar
18. Balanis, C. A., Advanced Engineering Electromagnetics, Chapter 6 and 7, Wiley, Hoboken, New Jersey, 2012.
19. Ludwig, A., "Computation of radiation patterns involving numerical double integration," IEEE TAP, Vol. 16, No. 6, 767-769, 1968. Google Scholar
20. Balanis, C. A., Antenna Theory, 620-637, WILEY, 1997.
21. Kohama, T. and M. Ando, "Localization of radiation integrals using the fresnel zone numbers," IEICE TEE, Vol. 95, No. 5, 928-935, 2012. Google Scholar
22. Yaghjian, A., "An overview of near-field antenna measurements," IEEE TAP, Vol. 34, No. 1, 30-45, Jan. 1986. Google Scholar
23. Morita, N., N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics, Chapter 4, Artech House, Boston, 1990.