Vol. 102
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-05-19
A Novel Triple Band MIMO Antenna Array for Simultaneous Communications
By
Progress In Electromagnetics Research M, Vol. 102, 159-169, 2021
Abstract
A novel and compact triple-band two-element Multiple Input Multiple Output (MIMO) antenna array is designed to provide simultaneous communications for uplink and downlink which covers GSM, LTE, and sub-6 base station applications. The proposed MIMO system is a configuration of four triple-band two-element arrays in which two are used for uplink and the other two for downlink. This compact structure with separate antennas for uplink and downlink provides simultaneous communication. For this proposed structure, the parameters like impedance bandwidth, efficiency, gain and cross polarization aspects are presented for all the three specified bands. To achieve good isolation uplink and downlink arrays are placed orthogonal to each other. Further, to enhance the isolation a defected ground is incorporated for the antenna array structure, and isolation strips are provided between uplink and downlink arrays. In addition, for the proposed structure diversity performance with Envelope Correlation Coefficient (ECC) and diversity gains are also calculated. The simulated and measured results are in acceptable correlation.
Citation
Jangampally Rajeshwar Goud Nalam Venkata Koteswara Rao Avala Mallikarjuna Prasad , "A Novel Triple Band MIMO Antenna Array for Simultaneous Communications," Progress In Electromagnetics Research M, Vol. 102, 159-169, 2021.
doi:10.2528/PIERM21042205
http://www.jpier.org/PIERM/pier.php?paper=21042205
References

1. Andrews, J. G., et al., "What will 5G be?," IEEE Journal on Selected Areas in Communications, Vol. 3, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098

2. Cui, Y., R. Li, and P. Wan, "A novel broadband planar antenna for 2G/3G/LTE base stations," IEEE Transactions on Antennas and Propagation, Vol. 6, No. 5, 2767-2774, May 2013.
doi:10.1109/TAP.2013.2244837

3. Cui, Y., R. Li, and P. Wan, "Novel dual-broadband planar antenna and its array for 2G/3G/LTE base station," IEEE Transactions on Antennas and Propagation, Vol. 6, No. 3, 1132-1139, Mar. 2013.
doi:10.1109/TAP.2012.2229377

4. Huang, H., Y. Liu, and S. Gong, "A novel dual-broadband and dual-polarized antenna for 2G/3G/LTE base stations," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 4113-4118, Sept. 2016.
doi:10.1109/TAP.2016.2589966

5. An, W. X., H. Won, K. L. Lau, S. F. Li, and Q. Xue, "Design of broadband dual-band dipole for base station antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1592-1595, Mar. 201.
doi:10.1109/TAP.2011.2180336

6. Li, Y., C. Sim, Y. Luo, and G. Yang, "12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, Vol. 6, 344-354, 2018.
doi:10.1109/ACCESS.2017.2763161

7. Zhai, H., J. Zhang, Y. Zan, Q. Gao, and C. Liang, "An LTE base-station magnetoelectric dipole antenna with anti-interference characteristics and its MIMO system application," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 906-909, 2015.
doi:10.1109/LAWP.2014.2384519

8. Pan, Y., Y. Cui, and R. Li, "Investigation of a triple-band multibeam MIMO antenna for wireless access points," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1234-1241, Apr. 2016.
doi:10.1109/TAP.2016.2526082

9. Wang, H., R. Zhang, Y. Luo, and G. Yang, "Compact eight-element antenna array for triple-band MIMO operation in 5G mobile terminals," IEEE Access, Vol. 8, 19433-19449, 2020.
doi:10.1109/ACCESS.2020.2967651

10. Sun, J., H. Fan, P. Lin, and C. Chuan, "Triple-band MIMO antenna for mobile wireless application," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 500-503, 2016.
doi:10.1109/LAWP.2015.2454536

11. Sun, X.-B., "Design of a triple-band antenna based on its current distribution," Progress In Electromagnetics Research Letters, Vol. 90, 113-119, 2020.
doi:10.2528/PIERL19122502

12. Holma, H. and A. Toskala, LTE for UMTS: OFDMA and SC-FDMA Based Radio Access, 267, John Wiley & Sons Ltd., United Kingdon, 2009.

13. Goud, J. R., N. V. Koteswara Rao, and A. M. Prasad, "Design of triple band U-slot MIMO antenna for simultaneous uplink and downlink communications," Progress In Electromagnetics Research C, Vol. 106, 271-283, 2020.
doi:10.2528/PIERC20082403

14. Park, J., M. Rahman, and H. N. Chen, "Isolation enhancement of wide-band MIMO array antennas utilizing resistive loading," IEEE Access, Vol. 7, 81020-81026, 2019.
doi:10.1109/ACCESS.2019.2923330

15. Iqbal, A., O. A. Saraereh, A. W. Ahmad, and S. Bashir, "Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna," IEEE Access, Vol. 6, 2755-2759, 2018.
doi:10.1109/ACCESS.2017.2785232

16. Naderi, M., F. B. Zarrabi, F. S. Jafari, and S. Ebrahimi, "Fractal EBG structure for shielding and reducing the mutual coupling in microstrip patch antenna array," AEU-International Journal of Electronics and Communications, Vol. 93, 261-267, 2018.
doi:10.1016/j.aeue.2018.06.028

17. Babashah, H., H. R. Hassani, and S. Mohammad-Ali-Nezhad, "A compact UWB printed monopole MIMO antenna with mutual coupling reduction," Progress In Electromagnetics Research C, Vol. 91, 55-67, 2019.
doi:10.2528/PIERC19010905

18. Veeramani, A., A. S. Arezomand, J. Vijayakrishnan, and F. B. Zarrabi, "Compact S-shaped EBG structures for reduction of mutual coupling," 2015 Fifth International Conference on Advanced Computing & Communication Technologies, 21-25, 2015.

19. El Ouahabi, M., A. Zakriti, M. Essaaidi, A. Dkiouak, and H. Elftouh, "A miniaturized dual-band MIMO antenna with low mutual coupling for wireless applications," Progress In Electromagnetics Research C, Vol. 93, 93-101, 2019.
doi:10.2528/PIERC19032601

20. Mishra, A. R., Fundamentals of Cellular Network Planning and Optimisation 2G/2.5G/3G ......Evolution to 4G, John Wiley & Sons Ltd, 2004.
doi:10.1002/0470862696

21. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, No. 9, 705-707, 2003.
doi:10.1049/el:20030495

22. Zhai, H., L. Xi, Y. Zang, and L. Li, "A low-profile dual-polarized high-isolation MIMO antenna arrays for wideband base-station applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 191-202, Jan. 2018.
doi:10.1109/TAP.2017.2776346