Vol. 103
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-07-22
Zero-Forcing Beamforming Energy Efficiency Optimization for the Security Control of Wireless Power Transfer System
By
Progress In Electromagnetics Research M, Vol. 103, 209-219, 2021
Abstract
This paper proposes a zero-forcing beamforming design for the energy efficiency optimization of the magnetic resonance based wireless power transfer system with multiple transmitter coils, which aims to secure energy transfer control. A scheme based on beamforming technology is proposed to prevent unauthorized users from accessing the system, which builds a beamforming model consisting of multiple transmitter coils, a target receiver, and a non-target receiver to simulate the actual system. Then to optimize the proposed system's energy efficiency while constraining the target receiver's energy, spectral efficiency, and transmitter's power, the proposed beamforming model is constructed as an optimization problem. To solve this non-convex nonlinear fractional programming problem, the Dinkelbach algorithm is used for fractional conversion, and then the zero-forcing constraints are equivalently replaced. Finally, two solutions of the nonlinear solution and closed-form solution are derived. The simulation results show that the energy efficiency optimization strategies of zero-forcing beamforming with the two derived solutions can satisfy the design requirements.
Citation
Zhimeng Xu, Jinyu Chen, Fenli Qiu, and Yisheng Zhao, "Zero-Forcing Beamforming Energy Efficiency Optimization for the Security Control of Wireless Power Transfer System," Progress In Electromagnetics Research M, Vol. 103, 209-219, 2021.
doi:10.2528/PIERM21050801
References

1. Zhang, Z., H. Pang, and A. Georgiadis, "Wireless power transfer: An overview," IEEE Transactions on Industrial Electronics, Vol. 66, No. 2, 1044-1058, Feb. 2019.
doi:10.1109/TIE.2018.2835378

2. Sun, H., H. Lin, and F. Zhu, "Magnetic resonant beamforming for secured wireless power transfer," IEEE Signal Processing Letters, Vol. 24, No. 9, 1173-1177, Aug. 2017.
doi:10.1109/LSP.2017.2703105

3. Sun, H., F. Gao, and F. Zhu, "Inductor design of magnetic resonance coupled circuits for secured wireless power transfer," IEEE International Conference on Communications, 1-6, 2017.

4. Campi, T., S. Cruciani, and F. Palandrani, "Wireless power transfer charging system for AIMDs and pacemakers," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 2, 633-642, Feb. 2016.
doi:10.1109/TMTT.2015.2511011

5. Moghadam, M. R. and R. Zhang, "Multiuser wireless power transfer via magnetic resonant coupling: Performance analysis, charging control, and power region characterization," IEEE Transactions on Signal and Information Processing over Networks, Vol. 2, No. 1, 72-83, Mar. 2016.
doi:10.1109/TSIPN.2015.2505904

6. Kisseleff, S., W. Gerstacker, and R. Schober, "Channel capacity of magnetic induction based wireless underground sensor networks under practical constraints," IEEE Wireless Communication and Networking Conference, 2603-2608, 2013.

7. Kisseleff, S., I. F. Akyildiz, and W. H. Gerstacker, "Throughput of the magnetic induction based wireless underground sensor networks: Key optimization techniques," IEEE Transactions on Communications, Vol. 62, No. 12, 4426-4439, Dec. 2014.
doi:10.1109/TCOMM.2014.2367030

8. Yang, G., M. R. Moghadam, and R. Zhang, "Magnetic MIMO signal processing and optimization for wireless power transfer," IEEE Transactions on Signal Processing, Vol. 65, No. 11, 2860-2874, Jun. 2017.
doi:10.1109/TSP.2017.2673816

9. Jadidian, J. and D. Katabi, "Magnetic MIMO: How to charge your phone in your pocket," 20th ACM Annual International Conference on Mobile Computing and Networking, 495-506, 2014.

10. Peng, C., Q. Shi, and W. Xu, "Energy efficiency optimization for multi-user MISO SWIPT systems," IEEE China Summit and International Conference on Signal and Information Processing, 772-776, 2015.

11. Ng, D. W., E. S. Lo, and R. Schober, "Wireless information and power transfer: Energy efficiency optimization in OFDMA systems," IEEE Transactions on Wireless Communications, Vol. 12, No. 12, 6352-6370, Dec. 2013.
doi:10.1109/TWC.2013.103113.130470

12. Timotheou, S., I. Krikidis, and G. Zheng, "Beamforming for MISO interference channels with QoS and RF energy transfer," IEEE Transactions on Wireless Communications, Vol. 13, No. 5, 2646-2658, May 2014.
doi:10.1109/TWC.2014.032514.131199

13. Tang, J., J. Luo, and M. Liu, "Energy efficiency optimization for NOMA with SWIPT," IEEE Journal of Selected Topics in Signal Processing, Vol. 13, No. 3, 452-466, Jun. 2019.
doi:10.1109/JSTSP.2019.2898114

14. Guimaraes, D. A., G. H. Floriano, and L. S. Chaves, "A tutorial on the CVX system for modeling and solving convex optimization problems," IEEE Latin America Transactions, Vol. 13, No. 5, 1228-1257, May 2015.
doi:10.1109/TLA.2015.7111976

15. Chu, Z., Z. Zhu, and M. Johnston, "Simultaneous wireless information power transfer for MISO secrecy channel," IEEE Transactions on Vehicular Technology, Vol. 65, No. 9, 6913-6925, Sept. 2016.
doi:10.1109/TVT.2015.2499439

16. Xu, K., M. Zhang, J. Liu, et al. "SWIPT in mMIMO system with non-linear energy-harvesting terminals: Protocol design and performance optimization," EURASIP Journal on Wireless Communications and Networking, 72, 2019.
doi:10.1186/s13638-019-1378-4

17. Yang, X., Z. Wang, X. Wan, and Z. Fan, "Secure energy-efficient resource allocation algorithm of massive MIMO system with SWIPT. Electronics," Electronics, Vol. 9, No. 1, 20, 2020.