1. Shi, Z., X. D. Sun, Y. F. Cai, and Z. B. Yang, "Torque analysis and dynamic performance improvement of a PMSM for EVs by skew angle optimization," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 2, 1-5, 2019. Google Scholar
2. Jayarajan, R., N. Fernando, and I. U. Nutkani, "A review on variable flux machine technology: Topologies, control strategies and magnetic materials," IEEE Access, Vol. 7, No. 4, 70141-70156, 2019.
doi:10.1109/ACCESS.2019.2918953 Google Scholar
3. Thike, R. and P. Pillay, "Characterization of a variable flux machine for transportation using a vector-controlled drive," IEEE Transactions on Transportation Electrification, Vol. 4, No. 2, 494-505, 2018.
doi:10.1109/TTE.2017.2788200 Google Scholar
4. Kim, J., D. Kim, G. Park, Y. Kim, and S. Jung, "Analysis and design of SPM type variable flux memory motor considering demagnetization characteristic of permanent magnet," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-5, 2018. Google Scholar
5. Zhu, X., S. Yang, Y. Du, Z. Xiang, and L. Xu, "Electromagnetic performance analysis and verification of a new flux-intensifying permanent magnet brushless motor with two-layer segmented permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016. Google Scholar
6. Sun, A., J. Li, R. Qu, J. Chen, and H. Lu, "Rotor design considerations for a variable-flux flux-intensifying interior permanent magnet machine with improved torque quality and reduced magnetization current," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 784-790, 2015.
doi:10.1109/ECCE.2015.7309769 Google Scholar
7. Yu, J., C. Liu, Z. Song, and H. Zhao, "Permeance and inductance modeling of a double-stator hybrid-excited flux-switching permanent-magnet machine," IEEE Transactions on Transportation Electrification, Vol. 6, No. 3, 1134-1145, 2020.
doi:10.1109/TTE.2020.3000953 Google Scholar
8. Yu, J. and C. Liu, "Multi-Objective optimization of a double-stator hybrid-excited flux-switching permanent-magnet machine," IEEE Transactions on Energy Conversion, Vol. 35, No. 1, 312-323, 2020.
doi:10.1109/TEC.2019.2932953 Google Scholar
9. Cao, L., K. T. Chau, C. H. T. Lee, and W. Lam, "Design and analysis of a new parallel-hybrid-excited machine with harmonic-shift structure," IEEE Transactions on Industrial Electronics, Vol. 67, No. 3, 1759-1770, 2020.
doi:10.1109/TIE.2019.2907445 Google Scholar
10. Yang, H., H. Lin, Y. Li, H. Wang, S. Fang, and Y. Huang, "Analytical modeling of switched flux memory machine," IEEE Transactions on Magnetics, Vol. 54, No. 3, 1-5, 2018.
doi:10.1109/TMAG.2018.2800462 Google Scholar
11. Xie, Y., Z. Ning, and Z. Ma, "Comparative study on variable flux memory machines with different arrangements of permanent magnets," IEEE Access, Vol. 8, No. 2, 164304-164312, 2020.
doi:10.1109/ACCESS.2020.3022595 Google Scholar
12. Wei, L. and T. Nakamura, "Design and optimization of a partitional stator flux-modulated memory machine," IEEE Transactions on Magnetics, Vol. 56, No. 4, 1-5, 2020.
doi:10.1109/TMAG.2019.2956055 Google Scholar
13. Yang, H., H. Lin, and Z. Q. Zhu, "Recent advances in variable flux memory machines for traction applications: A review," CES Transactions on Electrical Machines and Systems, Vol. 2, No. 1, 34-50, 2018.
doi:10.23919/TEMS.2018.8326450 Google Scholar
14. Liu, X. P., Y. L. Zou, and T. Z. Sun, "Design and performance analysis of a novel mechanical flux adjusting interior permanent magnet motor," Electrical Engineering, Vol. 103, No. 3, 1515-1524, 2021.
doi:10.1007/s00202-020-01189-y Google Scholar
15. Tessarolo, A., M. Mezzarobba, and R. Menis, "Modeling, analysis, and testing of a novel spoke-type interior permanent magnet motor with improved flux weakening capability," IEEE Transactions on Magnetics, Vol. 51, No. 4, 1-10, 2015. Google Scholar
16. Zhu, Z. Q., M. M. J. Al-Ani, X. Liu, and B. Lee, "A mechanical flux weakening method for switched flux permanent magnet machines," IEEE Transactions on Energy Conversion, Vol. 30, No. 2, 806-815, 2015.
doi:10.1109/TEC.2014.2380851 Google Scholar
17. Limsuwan, N., T. Kato, K. Akatsu, and R. D. Lorenz, "Design and evaluation of a variable-flux flux-intensifying interior permanent-magnet machine," IEEE Transactions on Industry Applications, Vol. 50, No. 2, 1015-1024, 2014.
doi:10.1109/TIA.2013.2273482 Google Scholar
18. Limsuwan, N., Y. Shibukawa, D. D. Reigosa, and R. D. Lorenz, "Novel design of flux-intensifying interior permanent magnet synchronous machine suitable for self-sensing control at very low speed and power conversion," IEEE Transactions on Industry Applications, Vol. 47, No. 5, 2004-2012, 2011.
doi:10.1109/TIA.2011.2161534 Google Scholar
19. Zhao, X., B. Kou, L. Zhang, and H. Zhang, "Design and analysis of permanent magnets in a negative-salient permanent magnet synchronous motor," IEEE Access, Vol. 8, No. 4, 182249-182259, 2020.
doi:10.1109/ACCESS.2020.3026841 Google Scholar
20. Zhang, L., X. Zhu, J. Gao, and Y. Mao, "Design and analysis of new five-phase flux-intensifying fault-tolerant interior-permanent-magnet motor for sensorless operation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 6055-6065, 2020.
doi:10.1109/TIE.2019.2955407 Google Scholar
21. Kato, T., M. Minowa, H. Hijikata, K. Akatsu, and R. D. Lorenz, "Design methodology for variable leakage flux ipm for automobile traction drives," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3811-3821, 2015.
doi:10.1109/TIA.2015.2439642 Google Scholar
22. Fan, W., X. Zhu, L. Quan, W. Wu, L. Xu, and Y. Liu, "Flux-weakening capability enhancement design and optimization of a controllable leakage flux multilayer barrier pm motor," IEEE Transactions on Industrial Electronics, Vol. 68, No. 9, 7814-7825, 2021.
doi:10.1109/TIE.2020.3016253 Google Scholar
23. Aoyama, M. and T. Noguchi, "Study and experimental performance evaluation of flux intensifying PM motor with variable leakage magnetic flux," Electrical Engineering in Japan, Vol. 207, No. 4, 36-54, 2019.
doi:10.1002/eej.23162 Google Scholar