1. Yahamoto, T., M. Izumi, M. Yokoyama, and K. Umemoto, "Electric propulsion motor development for commercial ships in Japan," Proceedings of the IEEE, Vol. 103, No. 12, 2333-2343, 2015.
doi:10.1109/JPROC.2015.2495134 Google Scholar
2. Yan, X., X. Liang, W. Ouyang, et al. "A review of progress and applications of ship shaft-less rim-driven thrusters," Ocean Engineering, Vol. 144, 142-156, 2017.
doi:10.1016/j.oceaneng.2017.08.045 Google Scholar
3. Li, Y., B. Song, Z. Mao, and W. Tian, "Analysis and optimization of the electromagnetic performance of a novel stator modular ring drive thruster motor," Energies, Vol. 11, No. 6, 1-23, 2018. Google Scholar
4. Hassannia, A. and A. Darabi, "Design and performance analysis of superconducting rim-driven synchronous motors for marine propulsion," IEEE Transactions on Applied Superconductivity, Vol. 24, No. 1, 40-46, 2014.
doi:10.1109/TASC.2013.2280346 Google Scholar
5. Ojaghlu, P. and A. Vahedi, "Specification and design of ring winding axial flux motor for rim-driven thruster of ship electric propulsion," IEEE Transactions on Vehicular Technology, Vol. 68, No. 2, 1318-1326, 2019.
doi:10.1109/TVT.2018.2888841 Google Scholar
6. Wu, F. and A. M. El Refaie, "Permanent magnet vernier machine: A review," IET Electric Power Applications, Vol. 13, No. 2, 127-137, 2019.
doi:10.1049/iet-epa.2018.5474 Google Scholar
7. Liu, C. and K. T. Chau, "Electromagnetic design and analysis of double-rotor flux-modulated permanent-magnet machines," Progress In Electromagnetics Research, Vol. 131, 81-97, 2012.
doi:10.2528/PIER12060605 Google Scholar
8. Wu, L., R. Qu, D. Li, et al. "Influence of pole ratio and winding pole numbers on performance and optimal design parameters of surface permanent-magnet vernier machines," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3707-3715, 2015.
doi:10.1109/TIA.2015.2426148 Google Scholar
9. Xu, L., G. Liu, W. Zhao, and J. Ji, "Hybrid excited vernier machines with all excitation sources on the stator for electric vehicles," Progress In Electromagnetics Research M, Vol. 46, 113-123, 2016.
doi:10.2528/PIERM15120305 Google Scholar
10. Toba, A. and T. A. Lipo, "Generic torque-maximizing design methodology of surface permanent-magnet vernier machine," IEEE Transactions on Industry Applications, Vol. 36, No. 6, 1539-1546, 2000.
doi:10.1109/28.887204 Google Scholar
11. Zhou, H., W. Tao, C. Zhou, et al. "Consequent pole permanent magnet vernier machine with asymmetric air-gap field distribution," IEEE Access, Vol. 7, 109340-109348, 2019.
doi:10.1109/ACCESS.2019.2933657 Google Scholar
12. Liu, G., M. Shao, W. Zhao, J. Ji, Q. Chen, and Q. Feng, "Modeling and analysis of halbach magnetized permanent-magnet machine by using lumped parameter magnetic circuit method," Progress In Electromagnetics Research M, Vol. 41, 177-188, 2015.
doi:10.2528/PIERM15012204 Google Scholar
13. Liu, W. and T. A. Lipo, "Analysis of consequent pole spoke type vernier permanent magnet machine with alternating flux barrier design," IEEE Transactions on Industry Applications, Vol. 54, No. 6, 5918-5929, 2018.
doi:10.1109/TIA.2018.2856579 Google Scholar
14. Kim, B. and T. A. Lipo, "Analysis of a PM vernier motor with spoke structure," IEEE Transactions on Industry Applications, Vol. 52, No. 1, 217-225, 2016.
doi:10.1109/TIA.2015.2477798 Google Scholar
15. Zou, T., D. Li, R. Qu, et al. "Advanced high torque density PM vernier machine with multiple working harmonics," IEEE Transactions on Industry Applications, Vol. 53, No. 6, 5295-5304, 2017.
doi:10.1109/TIA.2017.2724505 Google Scholar
16. Xu, L., W. Zhao, G. Liu, and C. Song, "Design optimization of a spoke-type permanent-magnet vernier machine for torque density and power factor improvements," IEEE Transactions on Vehicular Technology, Vol. 68, No. 4, 3446-3456, 2019.
doi:10.1109/TVT.2019.2902729 Google Scholar