1. Sharaf, M. H., A. I. Zaki, R. K. Hamad, and M. M. Omar, "A novel dual-band (38/60 GHz) patch antenna for 5G mobile handsets," Sensors, Vol. 20, No. 9, 2541, 2020.
doi:10.3390/s20092541 Google Scholar
2. Muhammad, S., A. S. Yaro, I. Ya'u, and A. T. Salawudeen, "Design of 5G mobile millimeter wave antenna," ATBU Journal of Science, Technology and Education, Vol. 7, No. 2, 178-184, 2019. Google Scholar
3. Jilani, S. F. and A. Alomainy, "Millimetre wave T shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microwaves, Antennas & Propagation, Vol. 12, No. 5, 672-677, 2018.
doi:10.1049/iet-map.2017.0467 Google Scholar
4. Mallat, N. K., M. Ishtiaq, A. Ur Rehman, and A. Iqbal, "Millimeter-wave in the face of 5G communication potential applications," IETE Journal of Research, 1-9, 2020.
doi:10.1080/03772063.2020.1714489 Google Scholar
5. Akpakwu, G. A., B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, "A survey on 5G networks for the Internet of Things: Communication technologies and challenges," IEEE Access, Vol. 6, 3619-3647, 2017. Google Scholar
6. Smith-Ditizio, A. A. and A. D. Smith, "Exploring the growth of wireless communications systems and challenges facing 4G networks," Advanced Methodologies and Technologies in Network Architecture, Mobile Computing, and Data Analytics. IGI Global, 889-902, 2019. Google Scholar
7. Diawuo, H. A. and Y. B. Jung, "Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1286-1290, 2018.
doi:10.1109/LAWP.2018.2842242 Google Scholar
8. Youcheng, W., Y. Yanjiao, C. Qingxi, and P. Hucheng, "Design of a compact ultra wideband MIMO antenna," The Journal of Engineering, Vol. 2019, No. 20, 6487-6489, 2019.
doi:10.1049/joe.2019.0277 Google Scholar
9. Liu, G. and D. Jiang, "5G: Vision and requirements for mobile communication system towards year 2020," Chinese Journal of Engineering, Vol. 2016, 8, 2016. Google Scholar
10. Ancans, G., V. Bobrovs, A. Ancans, and D. Kalibatiene, "Spectrum considerations for 5G mobile communication systems," Procedia Computer Science, Vol. 104, 509-516, 2017.
doi:10.1016/j.procs.2017.01.166 Google Scholar
11. Islam, N. and A. W. A.Wahab, "5G networks: A holistic view of enabling technologies and research challenges," Enabling Technologies and Architectures for Next-Generation Networking Capabilities, 37-70, 2019.
doi:10.4018/978-1-5225-6023-4.ch002 Google Scholar
12. Ahmed, I., H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moerman, "A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives," IEEE Communications Surveys & Tutorials, Vol. 20, No. 4, 3060-3097, 2018.
doi:10.1109/COMST.2018.2843719 Google Scholar
13. Bjornson, E., L. Van der Perre, S. Buzzi, and E. G. Larsson, "Massive MIMO in sub-6 GHz and mmWave: Physical, practical, and use-case differences," IEEE Wireless Communications, Vol. 26, No. 2, 100-108, 2019.
doi:10.1109/MWC.2018.1800140 Google Scholar
14. Seker, C., T. Ozturk, and M. T. Guneser, "A single band antenna design for future millimeter wave wireless communication at 38 GHz," European Journal of Engineering and Formal Sciences, Vol. 2, No. 2, 35-39, 2018.
doi:10.26417/ejef.v2i2.p35-39 Google Scholar
15. Ghazaoui, Y., A. El Alami, M. El Ghzaoui, S. Das, D. Barad, and S. Mohapatra, "Millimeter wave antenna with enhanced bandwidth for 5G wireless application," Journal of Instrumentation, Vol. 15, No. 01, T01003, 2020.
doi:10.1088/1748-0221/15/01/T01003 Google Scholar
16. Przesmycki, R., M. Bugaj, and L. Nowosielski, "Broadband microstrip antenna for 5G wireless systems operating at 28 GHz," Electronics, Vol. 10, No. 1, 1, 2021.
doi:10.3390/electronics10010001 Google Scholar
17. Marzouk, H. M., M. I. Ahmed, and A. A. Shaalan, "A novel dual-band 28/38 GHz AFSL MIMO antenna for 5G smartphone applications," Journal of Physics: Conference Series, Vol. 1447, No. 1, 012025, IOP Publishing, 2020.
doi:10.1088/1742-6596/1447/1/012025 Google Scholar
18. Rahman, A., Y. Ng M, A. U. Ahmed, T. Alam, M. J. Singh, and M. T. Islam, "A compact 5G antenna printed on manganese zinc ferrite substrate material," IEICE Electronics Express, Vol. 13, No. 11, 20160377-20160377, 2016.
doi:10.1587/elex.13.20160377 Google Scholar
19. Khattak, M. I., A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401 Google Scholar
20. Park, J. S., J. B. Ko, H. K. Kwon, B. S. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1685-1688, 2016.
doi:10.1109/LAWP.2016.2523514 Google Scholar
21. Hasan, M. N., S. Bashir, and S. Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, 2019..
doi:10.1080/09205071.2019.1617790 Google Scholar
22. Merlin Teresa, P. and G. Umamaheswari, "Compact slotted microstrip antenna for 5G applications operating at 28 GHz," IETE Journal of Research, 1-8, 2020.
doi:10.1080/03772063.2020.1779620 Google Scholar
23. Sharma, M., A. K. Gautam, N. Singh, N. S. Garigapati, and N. Agrawal, "Design of a novel dual band printed antenna for future mobile applications," Procedia Computer Science, Vol. 171, 917-923, 2020.
doi:10.1016/j.procs.2020.04.099 Google Scholar
24., https://www.itu.int/en/mediacentre/backgrounders/Pages/5G-fifth-generation-of-mobile-technologies.aspx, accessed on Oct. 02, 2021 at 3:00pm.
25. Ali, M. M. M. and A. R. Sebak, "Dual band (28/38 GHz) CPW slot directive antenna for future 5G cellular applications," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 399-400, Jun. 2016.
doi:10.1109/APS.2016.7695908 Google Scholar
26. Sam, C. M. and M. Mokayef, "A wide band slotted microstrip patch antenna for future 5G," EPH-International Journal of Science and Engineering, Vol. 2, No. 7, 19-23, 2016. Google Scholar
27. Ur-Rehman, M., M. Adekanye, and H. T. Chattha, "Tri-band millimetre-wave antenna for body-centric networks," Nano Communication Networks, Vol. 18, 72-81, 2018.
doi:10.1016/j.nancom.2018.03.003 Google Scholar
28. Cai, T., G. M. Wang, X. F. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, "Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2306-2311, 2015.
doi:10.1109/TAP.2015.2405081 Google Scholar
29. Yang, X. M., Q. H. Sun, Y. Jing, Q. Cheng, X. Y. Zhou, H. W. Kong, and T. J. Cui, "Increasing the bandwidth of microstrip patch antenna by loading compact artificial magneto-dielectrics," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 373-378, 2010.
doi:10.1109/TAP.2010.2096388 Google Scholar
30. Mosallaei, H. and K. Sarabandi, "Magneto-dielectrics in electromagnetics: Concept and applications," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1558-1567, 2004.
doi:10.1109/TAP.2004.829413 Google Scholar
31. Kuo, C., H. Zhang, A. Sarkar, X. Yu, V. Bhagavatula, A. Verma, and T. B. Cho, "A 5G FR2 (n257/n258/n261) transmitter front-end with a temperature-invariant integrated power detector for closed-loop EIRP control," 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 175-178, Jun. 2021.
doi:10.1109/RFIC51843.2021.9490447 Google Scholar