Vol. 108
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-02-22
A High Gain Multi Slotted and Compact Planar Microstrip Millimeter Wave Antenna for 5G Networks
By
Progress In Electromagnetics Research M, Vol. 108, 175-186, 2022
Abstract
The present scenario that demands a high data rate by the consumers in wireless communication has imposed a challenge in the present market. Therefore, millimetre wave technology is attracting the interest of researchers and industries. This paper proposes a rectangular planar microstrip antenna with slots in radiating elements as well as in the ground plane. The proposed structure has been designed, simulated and fabricated at a centre frequency of 28 GHz using 5880 RT duroid as a substrate, which has a relative permittivity of 2.2, loss-tangent of 9x10-4, and thickness of 1.6 mm. By performing the simulation using HFSS Ansys Software and also fabrication and testing, the proposed design attains a maximum gain of 8.735 dBi and a frequency band-width of around 2.815 GHz. The impedance bandwidth response ranges from 26.75-29.565 (10.1%) below the -10 dB line of the S11 plot. The proposed antenna is compact with dimensions of 2.19 x 3.95 mm and has wide bandwidth along with high gain, hence is a good candidate for mm-wave applications besides several innovative antenna-based gadgets. Measured S11 and VSWR results are in consistent with the simulated ones.
Citation
Shazia Ashraf, Javaid Ahmad Sheikh, and Zahid Ahmad Bhat, "A High Gain Multi Slotted and Compact Planar Microstrip Millimeter Wave Antenna for 5G Networks," Progress In Electromagnetics Research M, Vol. 108, 175-186, 2022.
doi:10.2528/PIERM22010904
References

1. Sharaf, M. H., A. I. Zaki, R. K. Hamad, and M. M. Omar, "A novel dual-band (38/60 GHz) patch antenna for 5G mobile handsets," Sensors, Vol. 20, No. 9, 2541, 2020.
doi:10.3390/s20092541        Google Scholar

2. Muhammad, S., A. S. Yaro, I. Ya'u, and A. T. Salawudeen, "Design of 5G mobile millimeter wave antenna," ATBU Journal of Science, Technology and Education, Vol. 7, No. 2, 178-184, 2019.        Google Scholar

3. Jilani, S. F. and A. Alomainy, "Millimetre wave T shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microwaves, Antennas & Propagation, Vol. 12, No. 5, 672-677, 2018.
doi:10.1049/iet-map.2017.0467        Google Scholar

4. Mallat, N. K., M. Ishtiaq, A. Ur Rehman, and A. Iqbal, "Millimeter-wave in the face of 5G communication potential applications," IETE Journal of Research, 1-9, 2020.
doi:10.1080/03772063.2020.1714489        Google Scholar

5. Akpakwu, G. A., B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, "A survey on 5G networks for the Internet of Things: Communication technologies and challenges," IEEE Access, Vol. 6, 3619-3647, 2017.        Google Scholar

6. Smith-Ditizio, A. A. and A. D. Smith, "Exploring the growth of wireless communications systems and challenges facing 4G networks," Advanced Methodologies and Technologies in Network Architecture, Mobile Computing, and Data Analytics. IGI Global, 889-902, 2019.        Google Scholar

7. Diawuo, H. A. and Y. B. Jung, "Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1286-1290, 2018.
doi:10.1109/LAWP.2018.2842242        Google Scholar

8. Youcheng, W., Y. Yanjiao, C. Qingxi, and P. Hucheng, "Design of a compact ultra wideband MIMO antenna," The Journal of Engineering, Vol. 2019, No. 20, 6487-6489, 2019.
doi:10.1049/joe.2019.0277        Google Scholar

9. Liu, G. and D. Jiang, "5G: Vision and requirements for mobile communication system towards year 2020," Chinese Journal of Engineering, Vol. 2016, 8, 2016.        Google Scholar

10. Ancans, G., V. Bobrovs, A. Ancans, and D. Kalibatiene, "Spectrum considerations for 5G mobile communication systems," Procedia Computer Science, Vol. 104, 509-516, 2017.
doi:10.1016/j.procs.2017.01.166        Google Scholar

11. Islam, N. and A. W. A.Wahab, "5G networks: A holistic view of enabling technologies and research challenges," Enabling Technologies and Architectures for Next-Generation Networking Capabilities, 37-70, 2019.
doi:10.4018/978-1-5225-6023-4.ch002        Google Scholar

12. Ahmed, I., H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moerman, "A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives," IEEE Communications Surveys & Tutorials, Vol. 20, No. 4, 3060-3097, 2018.
doi:10.1109/COMST.2018.2843719        Google Scholar

13. Bjornson, E., L. Van der Perre, S. Buzzi, and E. G. Larsson, "Massive MIMO in sub-6 GHz and mmWave: Physical, practical, and use-case differences," IEEE Wireless Communications, Vol. 26, No. 2, 100-108, 2019.
doi:10.1109/MWC.2018.1800140        Google Scholar

14. Seker, C., T. Ozturk, and M. T. Guneser, "A single band antenna design for future millimeter wave wireless communication at 38 GHz," European Journal of Engineering and Formal Sciences, Vol. 2, No. 2, 35-39, 2018.
doi:10.26417/ejef.v2i2.p35-39        Google Scholar

15. Ghazaoui, Y., A. El Alami, M. El Ghzaoui, S. Das, D. Barad, and S. Mohapatra, "Millimeter wave antenna with enhanced bandwidth for 5G wireless application," Journal of Instrumentation, Vol. 15, No. 01, T01003, 2020.
doi:10.1088/1748-0221/15/01/T01003        Google Scholar

16. Przesmycki, R., M. Bugaj, and L. Nowosielski, "Broadband microstrip antenna for 5G wireless systems operating at 28 GHz," Electronics, Vol. 10, No. 1, 1, 2021.
doi:10.3390/electronics10010001        Google Scholar

17. Marzouk, H. M., M. I. Ahmed, and A. A. Shaalan, "A novel dual-band 28/38 GHz AFSL MIMO antenna for 5G smartphone applications," Journal of Physics: Conference Series, Vol. 1447, No. 1, 012025, IOP Publishing, 2020.
doi:10.1088/1742-6596/1447/1/012025        Google Scholar

18. Rahman, A., Y. Ng M, A. U. Ahmed, T. Alam, M. J. Singh, and M. T. Islam, "A compact 5G antenna printed on manganese zinc ferrite substrate material," IEICE Electronics Express, Vol. 13, No. 11, 20160377-20160377, 2016.
doi:10.1587/elex.13.20160377        Google Scholar

19. Khattak, M. I., A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401        Google Scholar

20. Park, J. S., J. B. Ko, H. K. Kwon, B. S. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1685-1688, 2016.
doi:10.1109/LAWP.2016.2523514        Google Scholar

21. Hasan, M. N., S. Bashir, and S. Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, 2019..
doi:10.1080/09205071.2019.1617790        Google Scholar

22. Merlin Teresa, P. and G. Umamaheswari, "Compact slotted microstrip antenna for 5G applications operating at 28 GHz," IETE Journal of Research, 1-8, 2020.
doi:10.1080/03772063.2020.1779620        Google Scholar

23. Sharma, M., A. K. Gautam, N. Singh, N. S. Garigapati, and N. Agrawal, "Design of a novel dual band printed antenna for future mobile applications," Procedia Computer Science, Vol. 171, 917-923, 2020.
doi:10.1016/j.procs.2020.04.099        Google Scholar

24., https://www.itu.int/en/mediacentre/backgrounders/Pages/5G-fifth-generation-of-mobile-technologies.aspx, accessed on Oct. 02, 2021 at 3:00pm.

25. Ali, M. M. M. and A. R. Sebak, "Dual band (28/38 GHz) CPW slot directive antenna for future 5G cellular applications," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 399-400, Jun. 2016.
doi:10.1109/APS.2016.7695908        Google Scholar

26. Sam, C. M. and M. Mokayef, "A wide band slotted microstrip patch antenna for future 5G," EPH-International Journal of Science and Engineering, Vol. 2, No. 7, 19-23, 2016.        Google Scholar

27. Ur-Rehman, M., M. Adekanye, and H. T. Chattha, "Tri-band millimetre-wave antenna for body-centric networks," Nano Communication Networks, Vol. 18, 72-81, 2018.
doi:10.1016/j.nancom.2018.03.003        Google Scholar

28. Cai, T., G. M. Wang, X. F. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, "Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2306-2311, 2015.
doi:10.1109/TAP.2015.2405081        Google Scholar

29. Yang, X. M., Q. H. Sun, Y. Jing, Q. Cheng, X. Y. Zhou, H. W. Kong, and T. J. Cui, "Increasing the bandwidth of microstrip patch antenna by loading compact artificial magneto-dielectrics," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 373-378, 2010.
doi:10.1109/TAP.2010.2096388        Google Scholar

30. Mosallaei, H. and K. Sarabandi, "Magneto-dielectrics in electromagnetics: Concept and applications," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1558-1567, 2004.
doi:10.1109/TAP.2004.829413        Google Scholar

31. Kuo, C., H. Zhang, A. Sarkar, X. Yu, V. Bhagavatula, A. Verma, and T. B. Cho, "A 5G FR2 (n257/n258/n261) transmitter front-end with a temperature-invariant integrated power detector for closed-loop EIRP control," 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 175-178, Jun. 2021.
doi:10.1109/RFIC51843.2021.9490447        Google Scholar