1. "Consultation paper on licensing framework for satellite-based connectivity for low bit rate applications,", Telecom Regulatory Authority of India, March 12, 2021. Google Scholar
2. Gupta, A. K., P. S. R. Chowdary, and M. Vamshi Krishna, "Trends in IoT antenna design - A brief review," Test Engineering and Management, 14198-14203, July 2020, ISSN: 0193-4120.
doi:10.21786/bbrc/13.13/24 Google Scholar
3. Chindhi, P. S., H. P. Rajani, G. B. Kalkhambkar, and R. Khanai, "Characteristics mode analysis of modified inset-fed microstrip antenna for radio frequency energy harvesting, biosc," Biotech. Res. Comm., Vol. 13, No. 13, 171-176, Special Issue, 2020. Google Scholar
4. Chindhi, P. S., H. P. Rajani, and G. B. Kalkhambkar, "A tapered slot rectangular ultra-wideband microstrip patch antenna for radio frequency energy harvesting," Futuristic Communication and Network Technologies, 373-383, 2019.
doi:10.3390/electronics10222766 Google Scholar
5. Abdulkawi, W. M., A. F. A. Sheta, I. Elshafiey, and M. A. Alkanhal, "Design of low-profile single-and dual-band antennas for IoT applications," Electronics, Vol. 10, 2766, 2021.
doi:10.1186/s13638-019-1386-4 Google Scholar
6. Salucci, M., N. Anselmi, S. Goudos, and A. Massa, "Fast design of multiband fractal antennas through a system-by-design approach for NB-IoT applications," EURASIP Journal on Wireless Communications and Networking, Vol. 2019, 68, 2019.
doi:10.2528/PIERL20071104 Google Scholar
7. Jing, J., J. Pang, H. Lin, Z. Qiu, and C. Liu, "A multiband compact low-profile planar antenna based on multiple resonant stubs," Progress In Electromagnetics Research Letters, Vol. 94, 1-7, 2020.
doi:10.2528/PIERC19110901 Google Scholar
8. Kaur, M. and J. S. Sivia, "ANN and FA based design of hybrid fractal antenna for ISM band applications," Progress In Electromagnetics Research C, Vol. 98, 127-140, 2020.
doi:10.1007/s11277-020-07739-8 Google Scholar
9. Samson Daniel, R., "Asymmetric coplanar strip-fed with Hilbert curve fractal antenna for multiband operations," Wireless Personal Communications, Vol. 116, No. 1, 791-803, 2020. Google Scholar
10. Ez-Zaki, F., H. Belahrach, and A. Ghammaz, "Broadband microstrip antennas with Cantor set fractal slots for vehicular communications," International Journal of Microwave and Wireless Technologies, 1-14, 2020.
doi:10.2528/PIERC20110601 Google Scholar
11. Bharti, G. and J. S. Sivia, "A design of multiband nested square shaped ring fractal antenna with circular ring elements for wireless applications," Progress In Electromagnetics Research C, Vol. 108, 115-125, 2021. Google Scholar
12. Chindhi, P. S., G. B. Kalkhambkar, H. P. Rajani, and R. Khanai, "A brief survey on metamaterial antennas: Its importance and challenges," Futuristic Communication and Network Technologies, 425-432, 2020. Google Scholar
13. Kalkhambkar, G., R. Khanai, and P. Chindhi, "Fractals: A novel method in the miniaturization of a patch antenna with bandwidth improvement, information and communication technology for intelligent systems," Smart Innovation, Systems and Technologies, 106, 2019. Google Scholar
14. Kalkhambkar, G., R. Khanai, and P. Chindhi, "Design and analysis of wideband polygonal microstrip fractal patch antenna with three dimensional finite difference time domain method and UPML boundaries," International Journal of Advanced Research in Engineering and Technology (IJARET), Vol. 11, No. 9, 323-336, Article ID: IJARET 11 09 033, September 2020. Google Scholar
15. Sharma, N. and S. S. Bhatia, "Comparative analysis of hybrid fractal antennas: A review," Int. J. RF Microw. Comput. Aided Eng., e22762, 2021. Google Scholar
16. Anguera, J., C. Puente, C. Borja, and J. Soler, "Fractal shaped antennas: A review," Encyclopedia of RF and Microwave Engineering, https://doi.org/10.1002/0471654507.eme128, 2005. Google Scholar
17. Mandelbrot, B. B., The Fractal Geometry of Nature, ISBN 0-7167-1186-9, w. 320 H. Freeman and Company, 1983.
doi:10.3390/fractalfract4010003
18. Anguera, J., A. Andújar, J. Jayasinghe, V. V. S. S. Sameer Chakravarthy, P. S. R. Chowdary, J. L. Pijoan, and T. A. C. Cattani, "Fractal antennas: An historical perspective, MDPI," Fractal Fract., Vol. 4, No. 1, 3, 2020.
doi:10.2528/PIERB11053002 Google Scholar
19. Li, Y. S., X. D. Yang, C. Y. Liu, and T. Jiang, "Analysis and investigation of a cantor set fractal UWB antenna with a notch-band characteristic," Progress In Electromagnetics Research B, Vol. 33, 99-114, 2011. Google Scholar
20. Terlapu, S. K., P. S. R. Chowdary, C. Jaya, V. V. S. S. Sameer Chakravarthy, and S. C. Satpathy, "On the design of fractal UWB wide-slot antenna with notch band characteristics, microelectronics, electromagnetics and telecommunications," Lecture Notes in Electrical Engineering, 471, 2018. Google Scholar
21. Kaur, M. and J. S. Sivia, "Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm," Int. J. RF Microw. Comput. Aided Eng., Vol. 2019, e22000, 2019. Google Scholar
22. Manimegalai, B. and S. Raju, "A multifractal cantor antenna for multiband wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009. Google Scholar
23. Lee, H.-M., "Effect of partial ground plane removal on the front-to-back ratio of a microstrip antenna," 2013 7th European Conference on Antennas and Propagation (EuCAP), 2013. Google Scholar