1. Zhang, M., T. Yamamoto, J. Hirokawa, and M. Ando, "A wideband circularly polarized corporate-fed waveguide aperture array in the 60 GHz band," IEEE Antennas and Wireless Propagation Letters, Vol. 20, 1824-1828, 2021.
doi:10.1109/LAWP.2021.3098329 Google Scholar
2. Volakis, J. L., Antenna Engineering Handbook, McGraw-Hill Education, 2007.
3. Miura, Y., J. Hirokawa, M. Ando, Y. Shibuya, and G. Yoshida, "Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band," IEEE Transactions on Antennas and Propagation, Vol. 59, 2844-2851, 2011.
doi:10.1109/TAP.2011.2158784 Google Scholar
4. Ando, M., Y. Tsunemitsu, M. Zhang, J. Hirokawa, and S. Fujii, "Reduction of long line effects in single-layer slotted waveguide arrays with an embedded partially corporate feed," IEEE Transactions on Antennas and Propagation, Vol. 58, 2275-2280, 2010.
doi:10.1109/TAP.2010.2044346 Google Scholar
5. Arakawa, H., H. Irie, T. Tomura, and J. Hirokawa, "Suppression of E-plane sidelobes using a double slit layer in a corporate-feed waveguide slot array antenna consisting of 2×2-element radiating units," IEEE Transactions on Antennas and Propagation, Vol. 67, 3743-3751, 2019.
doi:10.1109/TAP.2019.2902677 Google Scholar
6. Tekkouk, K., J. Hirokawa, K. Oogimoto, T. Nagatsuma, H. Seto, Y. Inoue, et al. "Corporate-feed slotted waveguide array antenna in the 350-GHz band by silicon process," IEEE Transactions on Antennas and Propagation, Vol. 65, 217-225, 2016.
doi:10.1109/TAP.2016.2631132 Google Scholar
7. Shad, S. and H. Mehrpouyan, "60 GHz waveguide-fed cavity array antenna by multistepped slot aperture," IEEE Antennas and Wireless Propagation Letters, Vol. 19, 438-442, 2020.
doi:10.1109/LAWP.2020.2966149 Google Scholar
8. Kim, D., J. Hirokawa, M. Ando, J. Takeuchi, and A. Hirata, "4×4-element corporate-feed waveguide slot array antenna with cavities for the 120 GHz-band," IEEE Transactions on Antennas and Propagation, Vol. 61, 5968-5975, 2013.
doi:10.1109/TAP.2013.2281361 Google Scholar
9. Tomura, T., Y. Miura, M. Zhang, J. Hirokawa, and M. Ando, "A 45˚ linearly polarized hollow-waveguide corporate-feed slot array antenna in the 60-GHz band," IEEE Transactions on Antennas and Propagation, Vol. 60, 3640-3646, 2012.
doi:10.1109/TAP.2012.2201094 Google Scholar
10. Huang, G.-L., S.-G. Zhou, T.-H. Chio, and T.-S. Yeo, "Broadband and high gain waveguide-fed slot antenna array in the Ku-band," IET Microwaves, Antennas & Propagation, Vol. 8, 1041-1046, 2014.
doi:10.1049/iet-map.2013.0702 Google Scholar
11. Hirokawa, J., "Plate-laminated waveguide slot array antennas and its polarization conversion layers," Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, Vol. 53, 9-19, 2012. Google Scholar
12. Chen, Z., S.-G. Zhou, and T.-H. Chio, "A class of all metal cavity-backed slot array with direct metal laser sintering," IEEE Access, Vol. 6, 69650-69659, 2018.
doi:10.1109/ACCESS.2018.2880481 Google Scholar
13. He, J., Y. Wu, D. Chen, M. Zhang, J. Hirokawa, and Q. Liu, "Realization of a wideband series-fed 4×4-element waveguide slot array in the X-band," IEEE Access, 2021. Google Scholar
14. Mahmud, R. H. and M. J. Lancaster, "High-gain and wide-bandwidth filtering planar antenna array-based solely on resonators," IEEE Transactions on Antennas and Propagation, Vol. 65, 2367-2375, 2017.
doi:10.1109/TAP.2017.2670443 Google Scholar
15. Mahmud, R. H., H. N. Awl, Y. I. Abdulkarim, M. Karaaslan, and M. J. Lancaster, "Filtering two-element waveguide antenna array based on solely resonators," AEU-International Journal of Electronics and Communications, Vol. 121, 153232, 2020. Google Scholar
16. Mahmud, R. H. and M. J. Lancaster, "A 2×2 filtering subarray element antennas using all-resonator structures," IET Microwaves, Antennas & Propagation, Vol. 15, 592-599, 2021.
doi:10.1049/mia2.12080 Google Scholar
17. Mahmud, R. H., "Synthesis of waveguide antenna arrays using the coupling matrix approach,", University of Birmingham, 2016.
doi:10.1049/mia2.12080 Google Scholar
18. Williams, A. E., "A four-cavity elliptic waveguide filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 18, 1109-1114, 1970.
doi:10.1109/TMTT.1970.1127419 Google Scholar
19. Atia, A. E. and A. E. Williams, "Narrow-bandpass waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 20, 258-265, 1972.
doi:10.1109/TMTT.1972.1127732 Google Scholar
20. Skaik, T. F., M. Lancaster, and F. Huang, "Synthesis of multiple output coupled resonator circuits using coupling matrix optimisation," IET Microwaves, Antennas & Propagation, Vol. 5, 1081-1088, 2011.
doi:10.1049/iet-map.2010.0447 Google Scholar
21. Shang, X., Y. Wang, W. Xia, and M. J. Lancaster, "Novel multiplexer topologies based on all-resonator structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 3838-3845, 2013.
doi:10.1109/TMTT.2013.2284496 Google Scholar
22. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Vol. 167, John Wiley & Sons, 2004.
23. Pozar, D. M., Microwave Engineering, Chap. 6, John Wiley & Sons, 2011.
24. Miek, D., C. Bartlett, F. Kamrath, P. Boe, and M. Höft, "Investigation of the cutting plane and tolerance analysis of cross-coupled W-band waveguide filters with multiple transmission zeros by source to load cross-coupling," International Journal of Microwave and Wireless Technologies, 1-10, 2021. Google Scholar
25. Lancester, M., Passive Microwave Device Applications of Superconductors, Cambridge University Press, 1997.
doi:10.1017/CBO9780511526688
26. C. M. Studio, Computer Simulation Technology AG, Darmstadt, Germany, 2009. Google Scholar
27. El Mrabet, O., "High frequency structure simulator (HFSS) tutorial," IETR, UMR CNRS, Vol. 6164, 2005-2006, 2006. Google Scholar
28. Carceller, C., P. Soto, V. Boria, M. Guglielmi, and J. Gil, "Design of compact wideband manifold-coupled multiplexers," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 3398-3407, 2015.
doi:10.1109/TMTT.2015.2460738 Google Scholar
29. Zhang, Y., J. Xu, X. He, F. Zhang, Y. Sun, X. Li, et al. "A 3-D printed circularly polarized filtering antenna," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1999-2000, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8889108 Google Scholar
30. Santosa, C. E., J. T. S. Sumantyo, C. M. Yam, K. Urata, K. Ito, and S. Gao, "Subarray design for C-band circularly-polarized synthetic aperture radar antenna onboard airborne," Progress In Electromagnetics Research, Vol. 163, 107-117, 2018.
doi:10.2528/PIER18060602 Google Scholar
31. Lin, C.-K. and S.-J. Chung, "A filtering microstrip antenna array," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 2856-2863, 2011.
doi:10.1109/TMTT.2011.2160986 Google Scholar
32. Mansour, G., M. J. Lancaster, P. S. Hall, P. Gardner, and E. Nugoolcharoenlap, "Design of filtering microstrip antenna using filter synthesis approach," Progress In Electromagnetics Research, Vol. 145, 59-67, 2014.
doi:10.2528/PIER14011405 Google Scholar