Vol. 113
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-09-11
Low Profile/Single Layer X-Band Circularly Polarized Reflectarray with a Linearly Polarized Feed
By
Progress In Electromagnetics Research M, Vol. 113, 87-99, 2022
Abstract
This paper presents a design of a right hand circularly polarized x-band reflectarray antenna (RA) at a center frequency 12 GHz. The reflectarray is fed by a linearly polarized dipole antenna. The proposed reflectarray antenna can be used for CubeSat applications. The reflecting elements have the shape of a pentagon. This shape is chosen to convert the incident linearly polarized fields to the required circular polarization. A dipole antenna is used as linearly polarized (LP) feeding element for the proposed reflectarray. This dipole antenna is tilted w.r.t the x-axis by an angle 45˚ to introduce nearly equal polarizations in x and y directions on the aperture of the reflectarray. Each reflecting element is adjusted to produce a phase shift 90˚ between the reflection coefficients in x and y directions. The required reflected phase is realized by adjusting a scaling factor (SF) for the pentagonal patch in x direction to the corresponding SF in y axis. This phase difference is responsible for polarization conversion of the incident plane wave into circularly polarized reflected wave. The reflectarray is designed with focal to-diameter (F/D) ratio equals unity. In this work, an efficient technique is discussed for modelling the reflectarray designed. This technique is based on developing a Visual Basic Script file for allocating the reflecting elements with their corresponding dimensions in their location on the simulation tool. This script file is used directly by the simulation tool (HFSS) to draw the complete model automatically. This procedure has a significant role on simplifying the modeling of complicated structure like the proposed reflectarray. The proposed reflectarray antenna is simulated at 12 GHz. The obtained axial ratio (AR) is found to be 2.1 dB, and peak gain is 18 dBi. The antenna is also fabricated and measured for verification.
Citation
Shimaa Ahmed Megahed Soliman Ahmed Attiya Yahia M. Antar , "Low Profile/Single Layer X-Band Circularly Polarized Reflectarray with a Linearly Polarized Feed," Progress In Electromagnetics Research M, Vol. 113, 87-99, 2022.
doi:10.2528/PIERM22070106
http://www.jpier.org/PIERM/pier.php?paper=22070106
References

1. Puig-Suari, J., C. Turner, and W. Ahlgren, "Development of the standard CubeSat deployer and a CubeSat class PicoSatellite," Proceedings of the 2001 IEEE Aerospace Conference, 1/347-1/353, Big Sky, MT, USA, Mar. 10-17, 2001.

2. Chahat, N., et al., "Advanced CubeSat antennas for Deep Space and Earth Science missions: A review," IEEE Antennas Propag. Mag., Vol. 61, 37-46, 2019.
doi:10.1109/MAP.2019.2932608

3. Bulgasem, S., F. Tubbal, R. Raad, P. I. Theoharis, S. Lu, and S. Iranmanesh, "Antenna designs for CubeSats: A review," IEEE Access, Vol. 9, 45289-45324J, 2021.
doi:10.1109/ACCESS.2021.3066632

4. Huang, J. and J. A. Encinar, Reflectarray Antennas, Wiley/IEEE Press, Hoboken, NJ, USA, Nov. 2007, ISBN: 978-0-470-08491-5.

5. Shaker, J., M. R. Chaharmir, and J. Ethier, "Reflectarray Antennas: Analysis, Design, Fabrication, and Measurement," Artech House, Norwood, MA, USA, 2014.

6. Ghorbani, H., A. Tavakoli, M. Rabbani, and P. Dehkhoda, "Dualpolarized reflectaray element using open-loop patches," Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, 2179-2180, Vancouver, BC, Canada, Jul. 2015.

7. Costanzo, S., et al., "Dual-band dual-linear polarization reflectarray for mmWaves/5G applications," IEEE Access, Vol. 8, 78183-78192, 2020.
doi:10.1109/ACCESS.2020.2989581

8. Gao, S., Q. Luo, and F. Zhu, Circularly Polarized Antennas, Wiley, Hoboken, NJ, USA, 2013.

9. Liao, T., et al., "Broadband circular polarized reflectarray based on multi-resonance unit," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 6, e22618, 2021.
doi:10.1002/mmce.22618

10. Naseri, P., et al., "A dual-band dual-circularly polarized reflectarray for K/Ka-band space applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4627-4637, 2020.
doi:10.1109/TAP.2020.2972650

11. Yu, A., F. Yang, A. Z. Elsherbeni, J. Huang, and Y. Kim, "An offset-fed X-band reflectarray antenna using a modified element rotation technique," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1619-1624, Mar. 2012.
doi:10.1109/TAP.2011.2180299

12. Strassner, B., C. Han, and K. Chang, "Circularly polarized reflectarray with microstrip ring elements having variable rotation angles," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 4, 1122-1125, Apr. 2004.
doi:10.1109/TAP.2004.825635

13. Wu, G. B., S. W. Qu, S. Yang, and C. H. Chan, "Broadband, single-layer dual circularly polarized reflectarrays with linearly polarized feed," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4235-4241, 2016.
doi:10.1109/TAP.2016.2593873

14. Abadi, S. M. A. M. H. and N. Behdad, "Broadband true-time-delay circularly polarized reflectarray with linearly polarized feed," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 11, 4891-4896, 2016.
doi:10.1109/TAP.2016.2596900

15. Li, Y., M. E. Bialkowski, and A. M. Abbosh, "Single layer reflectarray with circular rings and open-circuited stubs for wideband operation," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4183-4189, Sep. 2012.
doi:10.1109/TAP.2012.2207060

16. Farias, R. L., C. Peixeiro, and M. V. T. Heckler, "Single layer dual-band dual-circularly polarized reflectarray for space communications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5989-5994, 2022.
doi:10.1109/TAP.2022.3161552

17. Zhou, Q., L. Guo, and W. Feng, "A single-layered wideband circularly polarized reflectarray using a linearly polarized feed," Microwave and Optical Technology Letters, 2022.

18. Visser, H. J., Array and Phased Array Antenna Basics, John Wiley & Sons, Hoboken, NJ, USA, 2006.

19. Bhattacharyya, A. K., "Phased array antennas," Floquet Analysis, Synthesis, BFNs, and Active Array Systems, John Wiley & Sons Inc. Publication, Hoboken, NJ, USA, 2006.

20. James, J. R., Handbook of Microstrip Antennas, Vol. 1, IET, 1989.