1. Shen, Y., X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, "Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities," Light: Science & Applications, Vol. 8, Article number: 90, 2019.
doi:10.1038/s41377-019-0194-2 Google Scholar
2. Lee, D., H. Sasaki, H. Fukumoto, K. Hiraga, and T. Nakagawa, "Orbital Angular Momentum (OAM) multiplexing: An enabler of a new era of wireless communications," IEICE Trans. Commun., Vol. E100-B, 1044-1063, 2017.
doi:10.1587/transcom.2016SCI0001 Google Scholar
3. Mao, F., M, Huang, J. Yang, C. Yang, T. Li, and J. Zhang, "Capacity performance of wireless OAM-based massive MIMO system," Progress In Electromagnetics Research M, Vol. 82, 149-156, 2019.
doi:10.2528/PIERM19030701 Google Scholar
4. Chen, R., H. Zhou, M. Moretti, X. Wang, and J. Li, "Orbital angular momentum waves: Generation, detection, and emerging applications," IEEE Commun. Surveys Tuts., Vol. 22, 840-868, 2020.
doi:10.1109/COMST.2019.2952453 Google Scholar
5. Zheng, F., Y. Chen, S, Ji, and G. Duan, "Research status and prospects of orbital angular momentum technology in wireless communication," Progress In Electromagnetics Research, Vol. 168, 113-132, 2020.
doi:10.2528/PIER20091104 Google Scholar
6. Yagi, Y., H. Sasaki, T. Yamada, and D. Lee, "200 Gb/s wireless transmission using dual-polarized OAM-MIMO multiplexing with uniform circular array on 28 GHz band," IEEE Antennas Wireless Propag. Lett., Vol. 20, 833-837, 2021.
doi:10.1109/LAWP.2021.3065098 Google Scholar
7. Varzakas, P., "Average channel capacity for Rayleigh fading spread spectrum MIMO systems," International Journal of Communication Systems, Vol. 19, 1081-1087, 2006.
doi:10.1002/dac.784 Google Scholar
8. Liu, K., Y. Cheng, X. Li, H. Wang, Y. Qin, and Y. Jiang, "Study on the theory and method of vortex-electromagnetic-wave-based radar imaging," IET Microwaves Antennas and Propagation, Vol. 10, 961-968, 2016.
doi:10.1049/iet-map.2015.0842 Google Scholar
9. Tang, B., J. Bai, and K.-Y. Guo, "Bi-target tracking based on vortex wave with orbital angular momentum," Progress In Electromagnetics Research C, Vol. 74, 123-129, 2017.
doi:10.2528/PIERC17030607 Google Scholar
10. Fang, Y., J. Chen, P. Wang, C. Li, and W. Liu, "A novel image formation method for electromagnetic vortex SAR with orbital-angular-momentum," Progress In Electromagnetics Research M, Vol. 82, 129-137, 2019.
doi:10.2528/PIERM19011704 Google Scholar
11. Zhang, K., Y. Wang, Y. Yuan, and S. N. Burokur, "A review of orbital angular momentum vortex beams generation: from traditional methods to metasurfaces," Appl. Sci., Vol. 10, 1015, 2020.
doi:10.3390/app10031015 Google Scholar
12. Byun, W.-J., B. S. Kim, Y.-S. Lee, M. S. Kang, K. S. Kim, and Y. H. Cho, "Simple generation of orbital angular momentum modes with azimuthally deformed Cassegrain subreflector," Electron. Lett., Vol. 51, No. 19, 1480-1482, 2015.
doi:10.1049/el.2015.1833 Google Scholar
13. Zheng, S., X. Hui, X. Jin, H. Chi, and X. Zhang, "Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1530-1536, 2015.
doi:10.1109/TAP.2015.2393885 Google Scholar
14. Liu, W., H. Cheng, J. Tian, and S. Chen, "Diffractive metalens: From fundamentals, practical applications to current trends," Advances in Physics: X, Vol. 5, No. 1, 1742584, 2020.
doi:10.1080/23746149.2020.1742584 Google Scholar
15. Zhang, K., Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, "Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region," Opt. Express, Vol. 26, No. 2, 1351-1360, 2018.
doi:10.1364/OE.26.001351 Google Scholar
16. Li, J.-S. and J.-Z. Chen, "Multi-beam and multi-mode orbital angular momentum by utilizing a single metasurface," Opt. Express, Vol. 29, No. 17, 27332-27339, 2021.
doi:10.1364/OE.434206 Google Scholar
17. Huang, H.-F. and H.-M. Huang, "Millimeter-wave wideband high efficiency circular Airy OAM multibeams with multiplexing OAM modes based on transmission metasurfaces," Progress In Electromagnetics Research, Vol. 173, 151-159, 2022.
doi:10.2528/PIER22022405 Google Scholar
18. Mohammadi, S. M., L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, "Orbital angular momentum in radio --- A system study," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 565-572, 2010.
doi:10.1109/TAP.2009.2037701 Google Scholar
19. Mazzinghi, A., M. Balma, D. Devona, G. Guarnieri, G. Mauriello, M. Albani, and A. Freni, "Large depth of field pseudo-Bessel beam generation with a RLSA antenna," IEEE Trans. Antennas Propag., Vol. 62, 3911-3919, 2014.
doi:10.1109/TAP.2014.2324557 Google Scholar
20. Wei, W., K. Mahdjoubi, C. Brousseau, and O. Emile, "Generation of OAM waves with circular phase shifter and array of patch antennas," Electron. Lett., Vol. 51, No. 6, 441-443, 2015.
doi:10.1049/el.2014.4425 Google Scholar
21. Liu, K., H. Liu, Y. Qin, Y. Cheng, S. Wang, X. Li, and H. Wang, "Generation of OAM beams using phased array in the microwave band," IEEE Trans. Antennas Propag., Vol. 64, 3850-3857, 2016.
doi:10.1109/TAP.2016.2589960 Google Scholar
22. Lin, M., Y. Gao, P. Liu, and J. Liu, "Theoretical analyses and design of circular array to generate orbital angular momentum," IEEE Trans. Antennas Propag., Vol. 65, No. 7, 3510-3519, 2017.
doi:10.1109/TAP.2017.2700160 Google Scholar
23. Liu, D., L. Gui, Z. Zhang, H. Chen, G. Song, and T. Jiang, "Multiplexed OAM wave communication with two-OAM-mode antenna systems," IEEE Access, Vol. 7, 4160-4166, 2019.
doi:10.1109/ACCESS.2018.2886553 Google Scholar
24. Padgett, M. J., F. M. Miatto, M. P. J. Lavery, A. Zeilinger, and R. W. Boyd, "Divergence of an orbital-angular-momentum-carrying beam upon propagation," New J. Phys., Vol. 17, 023011, 2015.
doi:10.1088/1367-2630/17/2/023011 Google Scholar
25. Xu, J., K. Bi, R. Zhang, Y. Hao, C. Lan, K. D. McDonald-Maier, X. Zhai, Z. Zhang, and S. Huang, "A small-divergence-angle orbital angular momentum metasurface antenna," AAAS Research, Vol. 2019, Article ID 9686213, 2019.
doi:10.34133/2019/9686213 Google Scholar
26. Fuscaldo, W., A. Benedetti, D. Comite, P. Burghignoli, P. Baccarelli, and A. Galli, "Microwave synthesis of Bessel, Bessel-Gauss, and Gaussian beams: A fully vectorial electromagnetic approach," Int. J. Microwave Wireless Technol., Vol. 13, 509-516, 2021.
doi:10.1017/S1759078720001798 Google Scholar
27. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.
28. Maffei, B., F. Noviello, J. A. Murphy, P. A. R. Ade, J.-M. Lamarre, F. R. Bouchet, J. Brossard, A. Catalano, R. Colgan, R. Gispert, E. Gleeson, C. V. Haynes, W. C. Jones, A. E. Lange, Y. Longval, I. McAuley, F. Pajot, T. Peacocke, G. Pisano, J.-L. Puget, I. Ristorcelli, G. Savini, R. Sudiwala, R. J. Wylde, and V. Yurchenko, "Planck pre-launch status: HFI beam expectations from the optical optimisation of the focal plane," Astron. Astrophys., Vol. 520, A12, 2010.
doi:10.1051/0004-6361/200912999 Google Scholar
29. Rosset, C., V. B. Yurchenko, J. Delabrouille, J. Kaplan, Y. Giraud-Heraud, J.-M. Lamarre, and J. A. Murphy, "Beam mismatch effects in cosmic microwave background polarization measurements," Astronomy and Astrophysics, Vol. 464, No. 1, 405-415, 2007.
doi:10.1051/0004-6361:20042230 Google Scholar
30. Yurchenko, V. B. and J.-M. Lamarre, "Efficient computation of the broadband beam sidelobes exemplified by the Planck high-frequency instrument," J. Opt. Soc. Am. A, Vol. 22, No. 12, 2838-2846, 2005.
doi:10.1364/JOSAA.22.002838 Google Scholar
31. Yurchenko, V. B., J. A. Murphy, and J.-M. Lamarre, "Fast physical optics simulations of the multi-beam dual-reflector submillimeter-wave telescope on the ESA Planck Surveyor," International Journal of Infrared and Millimeter Waves, Vol. 22, No. 1, 173-184, 2001.
doi:10.1023/A:1010778007547 Google Scholar
32. Hernandez-Figueroa, H. E., M. Zamboni-Rached, and E. Recami, Eds., Localized Waves, Wiley-Interscience, IEEE Press, Hoboken, N.J., 2008.
doi:10.1002/9780470168981
33. Albani, M., S. C. Pavone, M. Casaletti, and M. Ettorre, "Generation of non-diffractive Bessel beams by inward cylindrical traveling wave aperture distributions," Opt. Express, Vol. 22, No. 15, 18354-18364, 2014.
doi:10.1364/OE.22.018354 Google Scholar
34. Ciydem, M. and E. A. Miran, "Dual polarization wideband sub-6 GHz suspended patch antenna for 5G base station," IEEE Antennas Wireless Propag. Lett., Vol. 19, 1142-1146, 2020.
doi:10.1109/LAWP.2020.2991967 Google Scholar