Vol. 114
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-10-17
Uncertainty Analysis Method of Computational Electromagnetics Based on Clustering Method of Moments
By
Progress In Electromagnetics Research M, Vol. 114, 37-47, 2022
Abstract
Uncertainty analysis is one of the hot research issues in the field of computational electromagnetics in the past five years. The Method of Moments is a non-embedded uncertainty analysis method with relatively high computational efficiency, and has the unique advantage of not being affected by the ``curse of dimensionality''. However, when the nonlinearity between the simulation input and output is large, the accuracy of the Method of Moments is not ideal, which severely limits its application in the field of computational electromagnetics. In this paper, an improved strategy based on the central clustering algorithm is proposed to improve the expected value prediction results of the Method of Moments, thereby improving the accuracy of the overall uncertainty analysis. At the same time, the co-simulation technology of MATLAB software and COMSOL software is completed, then the accuracy and computational efficiency of the proposed algorithm in this paper are quantitatively verified. In this case, the clustering Method of Moments is effectively popularized in commercial electromagnetic simulation software.
Citation
Jinjun Bai Mingzhao Wang Xiaolong Li , "Uncertainty Analysis Method of Computational Electromagnetics Based on Clustering Method of Moments," Progress In Electromagnetics Research M, Vol. 114, 37-47, 2022.
doi:10.2528/PIERM22071703
http://www.jpier.org/PIERM/pier.php?paper=22071703
References

1. Manfredi, P., "Polynomial chaos for random field coupling to transmission lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, 677-680, 2012.
doi:10.1109/TEMC.2012.2193586

2. Manfredi, P., D. V. Ginste, I. S. Stievano, D. D. Zutter, and F. Canavero, "Stochastic transmission line analysis via polynomial chaos methods: An overview," IEEE Electromagnetic Compatibility Magazine, Vol. 6, No. 3, 77-84, 2017.
doi:10.1109/MEMC.0.8093844

3. Xie, H., J. F. Dawson, J. Yan, A. Marvin, and M. Robinson, "Numerical and analytical analysis of stochastic electromagnetic fields coupling to a printed circuit board trace," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 4, 1128-1135, 2020.
doi:10.1109/TEMC.2019.2954303

4. Wu, T. L., F. Buesink, and F. Canavero, "Overview of signal integrity and EMC design technologies on PCB: Fundamentals and latest progress," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, 677-680, 2013.

5. Zhang, Z., T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, "Stochastic testing method for transistor-level uncertainty quantification based on generalized polynomial chaos," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 32, No. 10, 1533-1545, 2013.
doi:10.1109/TCAD.2013.2263039

6. Ajayi, A., P. Ingrey, P. Sewell, and C. Christopoulos, "Direct computation of statistical variations in electromagnetic problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 2, 325-332, 2008.
doi:10.1109/TEMC.2008.921039

7. Manfredi, P., D. V. Ginste, D. D. Zutter, and F. Canavero, "Generalized decoupled polynomial chaos for nonlinear circuits with many random parameters," IEEE Microwave & Wireless Components Letters, Vol. 25, No. 8, 505-507, 2015.
doi:10.1109/LMWC.2015.2440779

8. Bellan, D. and S. A. Pignari, "Efficient estimation of crosstalk statistics in random wire bundles with lacing cords," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 1, 209-218, 2011.
doi:10.1109/TEMC.2010.2093147

9. Spadacini, G. and S. A. Pignari, "Numerical assessment of radiated susceptibility of twisted-wire pairs with random nonuniform twisting," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 5, 956-964, 2013.
doi:10.1109/TEMC.2012.2235446

10. Jullien, C., P. Besnier, M. Dunand, and I. Junqua, "Advanced modeling of crosstalk between an unshielded twisted pair cable and an unshielded wire above a ground plane," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 1, 183-194, 2013.
doi:10.1109/TEMC.2012.2206599

11. Gillman, A., A. H. Barnett, and P. G. Martinsson, "A spectrally accurate direct solution technique for frequency-domain scattering problems with variable media," BIT, Vol. 55, No. 1, 141-170, 2013.
doi:10.1007/s10543-014-0499-8

12. De Menezes, L. R. A. X., D. W. P. Thomas, C. Christopoulos, A. Ajayi, and P. Sewell, "The use of unscented transforms for statistical analysis in EMC," 2008 International Symposium on Electromagnetic Compatibility --- EMC Europe, 1-5, IEEE, September 2008.

13. Thomas, D. W. P., O. A. Oke, and C. Smartt, "Statistical analysis in EMC using dimension reduction methods," 2014 IEEE International Symposium on Electromagnetic Compatibility (EMC), 316-321, IEEE, August 2014.
doi:10.1109/ISEMC.2014.6898990

14. Zhang, Y., et al., "Analysis of nonuniform transmission lines with a perturbation technique in time domain," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 2, 542-548, 2020.
doi:10.1109/TEMC.2019.2906251

15. Manfredi, P., D. VandeGinste, D. De Zutter, and F. G. Canavero, "On the passivity of polynomial chaos-based augmented models for stochastic circuits," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 11, 2998-3007, 2013.
doi:10.1109/TCSI.2013.2256256

16. Manfredi, P. and F. G. Canavero, "General decoupled method for statistical interconnect simulation via polynomial chaos," 2014 IEEE 23rd Conference on Electrical Performance of Electronic Packaging and Systems, 25-28, IEEE, October 2014.

17. Wang, T., et al., "Statistical analysis of crosstalk for automotive wiring harness via the polynomial chaos method," Journal of the Balkan Tribological Association, Vol. 22, No. 2, 1503-1517, 2016.

18. Bai, J., G. Zhang, D. Wang, A. P. Duffy, and L. Wang, "Performance comparison of the SGM and the SCM in EMC simulation," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 6, 1739-1746, 2016.
doi:10.1109/TEMC.2016.2588580

19. Bai, J., G. Zhang, A. P. Duffy, and L. Wang, "Dimension-reduced sparse grid strategy for a stochastic collocation method in EMC software," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 218-224, 2018.
doi:10.1109/TEMC.2017.2699691

20. Fei, Z., Y. Huang, J. Zhou, and Q. Xu, "Uncertainty quantification of crosstalk using stochastic reduced order models," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 1, 228-239, 2017.
doi:10.1109/TEMC.2016.2604361

21. Edwards, R. S., "Uncertainty analyses in computational electromagnetism,", PhD thesis, University of York, 2009.

22. Bai, J., et al., "Uncertainty analysis in EMC simulation based on improved method of moments," Applied Computational Electromagnetics Society Journal, Vol. 31, No. 1, 66-71, 2016.

23. Makki, B., A. Ide, T. Svensson, T. Eriksson, and M. Alouini, "A genetic algorithm-based antenna selection approach for large-but-finite MIMO networks," IEEE Transactions on Vehicular Technology, Vol. 66, No. 7, 6591-6595, 2017.
doi:10.1109/TVT.2016.2646139

24. Capelli, F., J. Riba, E. Rupérez, and J. Sanllehí, "A genetic-algorithm-optimized fractal model to predict the constriction resistance from surface roughness measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 66, No. 9, 2437-2447, 2017.
doi:10.1109/TIM.2017.2707938

25. Zhang, G., "Research on key issues of FSV evaluation method for credibility of electromagnetic simulation results,", Harbin Polytechnic Institute, 2014.

26. Duffy, A. P., A. Orlandi, and G. Zhang, "Review of the feature selective validation method (FSV). Part I --- Theory," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 4, 814-821, 2018.
doi:10.1109/TEMC.2017.2776406

27. Orlandi, A., A. P. Duffy, and G. Zhang, "Review of the feature selective validation method (FSV). Part II --- Performance analysis and research fronts," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 4, 1029-1035, 2018.
doi:10.1109/TEMC.2018.2796080

28. COMSOL, "Antenna crosstalk simulation on aircraft airframe,", Shanghai, China: COMSOL, 2017, http://cn.comsol.com/model/simulating-antenna-crosstalk-on-an-airplane-s-fuselage-18087.