Vol. 115
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-01-07
A Gain Enhanced Dual-Band Low SAR AMC-Based MIMO Antenna for WBAN and WLAN Applications
By
Progress In Electromagnetics Research M, Vol. 115, 21-34, 2023
Abstract
On the basis of artificial magnetic conductors (AMCs), a dual-band MIMO antenna is suggested. For WBAN and WLAN applications, the frequency ranges supported by this antenna system are 2.36-2.51 GHz and 5.03-6.12 GHz. The proposed dual-band MIMO antenna is made up of two vertically positioned dipole antenna elements. A simple double circle-based AMC array is suggested to decrease radiation exposure to people while increasing forward gain. The antenna and the 3×3 AMC array are both printed on an FR4 substrate. The presented antenna with the AMC structure is manufactured and measured in order to confirm the simulated results in terms of S-parameters, radiation patterns, gain, and diversity parameters. According to the measurements, the suggested antenna exhibits peak gains of 3.34 dBi and 7.48 dBi at 2.45 GHz and 5.8 GHz, respectively. The SAR value of body tissue can be reduced by around 99% while the front-to-back ratio (FBR) is noticeably enhanced. The proposed AMC-supported MIMO antenna is applicable for WBAN and WLAN applications based on the above good performances.
Citation
Chengzhu Du Ling-Ru Pei Jie Zhang Cheng-Xin Shi , "A Gain Enhanced Dual-Band Low SAR AMC-Based MIMO Antenna for WBAN and WLAN Applications," Progress In Electromagnetics Research M, Vol. 115, 21-34, 2023.
doi:10.2528/PIERM22100201
http://www.jpier.org/PIERM/pier.php?paper=22100201
References

1. Astrin, A. W., H.-B. Li, and R. Kohno, "Standardization for body area networks," IEIC Transactioon Communications, Vol. 92-B, 366-372, 2009.
doi:10.1587/transcom.E92.B.366

2. Mäkinen, R. M. and T. Kellomäki, "Body effects on thin single-layer slot, self-complementary, and wire antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 385-392, 2014.
doi:10.1109/TAP.2013.2288786

3. Saeed, S. M., C. A. Balanis, C. R. Birtcher, A. C. Durgun, and H. N. Shaman, "Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2396-2399, 2017.
doi:10.1109/LAWP.2017.2720558

4. El Atrash, M., M. A. Abdalla, and H. M. Elhennawy, "A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6378-6388, 2019.
doi:10.1109/TAP.2019.2923058

5. Jiang, Z. H., Z. Cui, T. Yue, Y. Zhu, and D. H. Werner, "Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks," IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 4, 920-932, 2017.
doi:10.1109/TBCAS.2017.2671841

6. Jiang, Z. H., D. E. Brocker, P. E. Sieber, and D. H. Werner, "A compact, low-profile metasurface-enabled antenna for wearable medical body area network devices," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4021-4030, 2014.
doi:10.1109/TAP.2014.2327650

7. Kitra, M. I., P. McEvoy, J. C. Vardaxoglou, and J. R. James, "Material loaded antennas and their contribution towards low-SAR," 2004 IEE Antenna Measurements and SAR, AMS 2004, 75-78, 2004.

8. Liu, H., J.Wang, and X. Luo, "Flexible and compact AMC based antenna for WBAN applications," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 587-588, 2017.
doi:10.1109/APUSNCURSINRSM.2017.8072336

9. Pandit, V. K. and A. R. Harish, "Gain enhancement of a dual-band monopole antenna loaded with dual-band AMC," 2017 IEEE Applied Electromagnetics Conference (AEMC), 1-2, 2017.

10. Mumin, A. R. O., R. Alias, J. Abdullah, S. H. Dahlan, J. Ali, and S. K. Debnath, "Design a compact square ring patch antenna with AMC for SAR reduction in WBAN applications," Bulletin of Electrical Engineering and Informatics, Vol. 9, No. 1, 370-378, 2020.
doi:10.11591/eei.v9i1.1686

11. Bahaa Qas Elias, B., P. Jack Soh, A. Abdullah Al-Hadi, C. Hodgkinson, and S. K. Podilchak, "Design of a compact textile crown antenna integrated with AMC for wearable iot applications," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-4, 2021.

12. Wang, S. and H. Gao, "A dual-band wearable conformal antenna based on artificial magnetic conductor," International Journal of Antennas and Propagation, Vol. 2022, Article ID 9970477, 8 pages, 2022.

13. Gong, Y., S. Yang, B. Li, Y. Chen, F. Tong, and C. Yu, "Multi-band and high gain antenna using AMC ground characterized with four zero-phases of reflection coefficient," IEEE Access, Vol. 8, 171457-171468, 2020.
doi:10.1109/ACCESS.2020.3024982

14. Chaouche, Y. B. and M. Nedil, "A compact CP wearable antenna backed by AMC array for WBAN/WLAN applications," 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), 1882-1883, 2022.
doi:10.1109/AP-S/USNC-URSI47032.2022.9886936

15. Zhou, E., Y. Cheng, F. Chen, H. Luo, and X. Li, "Low-profile high-gain wideband multi-resonance microstrip-fed slot antenna with anisotropic metasurface," Progress In Electromagnetics Research, Vol. 175, 91-104, 2022.
doi:10.2528/PIER22062201

16. Yang, Z., F. Li, X. Yang, and F. Li, "A compact dual-band MIMO antenna with high isolation for WLAN applications," 2018 48th European Microwave Conference (EuMC), 1125-1128, 2018.
doi:10.23919/EuMC.2018.8541386

17. Zhu, J., S. Li, S. Liao, and Q. Xue, "Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 458-462, 2018.
doi:10.1109/LAWP.2018.2795018

18. Liu, Q., H. Liu, W. He, and S. He, "A low-profile dual-band dual-polarized antenna with an AMC reflector for 5G communications," IEEE Access, Vol. 8, 24072-24080, 2020.
doi:10.1109/ACCESS.2020.2970473

19. Ibrahim, A. A. and W. A. E. Ali, "High gain, wideband and low mutual coupling AMC-based millimeter wave MIMO antenna for 5G NR networks," AEU --- International Journal of Electronics and Communications, Vol. 142, 2021.

20. Du, C., X. Li, and S. Zhong, "Compact liquid crystal polymer based tri-band flexible antenna for WLAN/ WiMAX/5G applications," IEEE Access, 2019.