1. Knight, J. C., "Photonic crystal fibres," Nature, Vol. 424, No. 6950, 847-851, 2003.
doi:10.1038/nature01940 Google Scholar
2. Knight, J., T. Birks, P. S. J. Russell, and D. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Optics Letters, Vol. 21, No. 19, 1547-1549, 1996.
doi:10.1364/OL.21.001547 Google Scholar
3. Xiao, L., W. Jin, and M. Demokan, "Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs," Optics Express, Vol. 15, No. 24, 15637-15647, 2007.
doi:10.1364/OE.15.015637 Google Scholar
4. Zhang, L. and C. Yang, "A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores," IEEE Photonics Technology Letters, Vol. 16, No. 7, 1670-1672, 2004.
doi:10.1109/LPT.2004.828850 Google Scholar
5. Yuan, J., G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, and Y. Han, "Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,", Vol. 141, 659-670, 2013. Google Scholar
6. Baggett, J. C., T. M. Monro, K. Furusawa, and D. Richardson, "Comparative study of large-mode holey and conventional fibers," Optics Letters, Vol. 26, No. 14, 1045-1047, 2001.
doi:10.1364/OL.26.001045 Google Scholar
7. Podder, E., M. Hossain, R. H. Jibon, A. A.-M. Bulbul, and H. S. J. F. O. O. Mondal, "Chemical sensing through photonic crystal fiber: sulfuric acid detection,", Vol. 12, No. 4, 372-381, 2019. Google Scholar
8. Ouadah, M. C. E. and M. E. K. Chikh-Bled, "Novel high negative chromatic dispersion photonic crystal fiber with low confinement loss," Journal of Electrical and Electronics Engineering, Vol. 9, No. 1, 25, 2016. Google Scholar
9. Dadabayev, R., N. Shabairou, Z. Zalevsky, and D. Malka, "A visible light RGB wavelength demultiplexer based on silicon-nitride multicore PCF," Optics & Laser Technology, Vol. 111, 411-416, 2019.
doi:10.1016/j.optlastec.2018.10.016 Google Scholar
10. Rahman, Md. M., A. Khaleque, Md. T. Rahman, and F. Rabbi, "Gold-coated photonic crystal fiber based polarization filter for dual communication windows,", Vol. 461, 125293, 2020. Google Scholar
11. An, S., J. Lv, Z. Yi, C. Liu, L. Yang, F. Wang, Q. Liu, W. Su, X. Li, T. Sun, and P. K. Chu, "Ultra-short and dual-core photonic crystal fiber polarization splitter composed of metal and gallium arsenide,", Vol. 226, 165779, 2021. Google Scholar
12. Khan, K. R., S. Bidnyk, and T. J. Hall, "Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,", Vol. 22, 179-189, 2012. Google Scholar
13. Agbemabiese, P. A. and E. K. Akowuah, "Numerical analysis of photonic crystal fiber of ultra-high birefringence and high nonlinearity," Scientific Reports, Vol. 10, No. 1, 1-12, 2020.
doi:10.1038/s41598-020-77114-x Google Scholar
14. Yu, F., Z. Wang, W. Yang, and C. Lv, "Characteristics of highly birefringent photonic crystal fiber with defected core and equilateral pentagon architecture," Advances in Opto Electronics, 2016. Google Scholar
15. Ahmed, K., B. K. Paul, Md. S. Islam, S. Chowdhury, S. Sen, Md. I. Islam, and S. Asaduzzaman, "Ultra high birefringence and lower beat length for square shape PCF: Analysis effect on rotation angle and eccentricity," Alexandria Engineering Journal, Vol. 57, No. 4, 3683-3691, 2018.
doi:10.1016/j.aej.2018.01.018 Google Scholar
16. Zhang, P., J. Zhang, P. Yang, S. Dai, X. Wang, and W. Zhang, "Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling," Optical Fiber Technology, Vol. 26, 176-179, 2015.
doi:10.1016/j.yofte.2015.09.002 Google Scholar
17. Pysz, D., I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, "Stack and draw fabrication of soft glass microstructured fiber optics," Bulletin of the Polish Academy of Sciences. Technical Sciences, Vol. 62, No. 4, 2014.
doi:10.2478/bpasts-2014-0073 Google Scholar
18. Liu, Y., X. Jing, H. Chen, J. Li, Y. Guo, S. Zhang, H. Li, and S. Li, "Highly sensitive temperature sensor based on Sagnac interferometer using photonic crystal fiber with circular layout,", Vol. 314, 112236, 2020. Google Scholar
19. Sacher, R. and W. Sacher, "Optical liquids," CRC Handbook of Laser Science and Technology, 97-112, CRC Press, 2020.
doi:10.1201/9781003067955-8 Google Scholar
20. Garlinska, M., A. Pregowska, K. Masztalerz, and M. J. F. I. Osial, "From mirrors to free-space optical communication --- historical aspects in data transmission,", Vol. 12, No. 11, 179, 2020. Google Scholar
21. Portosi, V., D. Laneve, M. C. Falconi, and F. J. S. Prudenzano, "Advances on photonic crystal fiber sensors and applications,", Vol. 19, No. 8, 1892, 2019. Google Scholar
22. Bing, P., J. Sui, G. Wu, X. Guo, Z. Li, L. Tan, and J. Yao, "Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors,", Vol. 15, No. 4, 1071-1076, 2020. Google Scholar
23. Sultana, J., Md. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, "Terahertz detection of alcohol using a photonic crystal fiber sensor,", Vol. 57, No. 10, 2426-2433, 2018. Google Scholar
24. Van Lanh, C., K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczynski, and J. Pniewski, "Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation," Laser Physics, Vol. 29, No. 7, 075107, 2019.
doi:10.1088/1555-6611/ab2115 Google Scholar
25. Debbal, M., M. Bouregaa, H. Chikh-Bled, M. E. K. Chikh-Bled, and M. C. E. Ouadah, "In fluence of temperature on the chromatic dispersion of photonic crystal fiber by infiltrating the air holes with water," Journal of Optical Communications, Vol. 1, No. ahead-of-print, 2019. Google Scholar
26. Wang, C., P. P. Shum, D. J. J. Hu, Y.-C. Chen, Z. Xu, S. Liu, Y. Zhang, Y. Zhu, Y. Zheng, and B. Li, "Two-core photonic crystal fiber with selective liquid infiltration in the central air hole for temperature sensing,", Vol. 3, No. 8, 2264-2276, 2020. Google Scholar
27. Saitoh, K. and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE Journal of Quantum Electronics, Vol. 38, No. 7, 927-933, 2002.
doi:10.1109/JQE.2002.1017609 Google Scholar
28. Habib, M. S., M. S. Rana, M. Moniruzzaman, M. S. Ali, and N. Ahmed, "Highly birefringent broadband-dispersion-compensating photonic crystal fibre over the E+ S+ C+ L+ U wavelength bands," Optical Fiber Technology, Vol. 20, No. 5, 527-532, 2014.
doi:10.1016/j.yofte.2014.06.004 Google Scholar
29. Huang, T., Q. Wei, Z. Wu, X. Wu, Xu, P. Huang, Z. Cheng, and P. P. Shum, "Ultra-flattened normal dispersion fiber for supercontinuum and dissipative soliton resonance generation at 2 µm," IEEE Photonics Journal, Vol. 11, No. 3, 1-11, 2019. Google Scholar
30. Begum, F. and P. E. Abas, "Near infrared supercontinuum generation in silica based photonic crystal fiber,", Vol. 89, 149-159, 2019. Google Scholar
31. Upadhyay, A., S. Singh, Y. Prajapati, and R. Tripathi, "Numerical analysis of large negative dispersion and highly birefringent photonic crystal fiber," Optik, Vol. 218, 164997, 2020.
doi:10.1016/j.ijleo.2020.164997 Google Scholar