Vol. 115
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-12-27
Effect of the Temperature and the Geometrical Parameters on the Modal Properties of Circular Photonic Crystal Fiber
By
Progress In Electromagnetics Research M, Vol. 115, 1-10, 2023
Abstract
This paper presents a proposal for a high birefringμeμnce photonic crystal fiber (C-PCF) with a doped liquid into two first ring holes, which is analyzed by the finite element method. It is demonstrated that the proposed fiber has a birefringence value of about 2.643 × 10-2 at wavelength λ = 1.55 µm and temperature T = 25˚C. Also, a high chromatic dispersion of -272 ps/nm/km, an effective area of 1.693 µm2, and a confinement loss of 0.058 dB/m for the x-polarization method were obtained at the same wavelength and temperature. The temperature influence on the modal properties has also been studied. We will demonstrate through the result that the fiber we propose can be used in both sensing and chromatic dispersion applications such as flattened dispersion fibers.
Supplementary Information
Citation
Mohammed Chamse Eddine Ouadah Mohammed Debbal Hicham Chikh-Bled Mouweffeq Bouregaa , "Effect of the Temperature and the Geometrical Parameters on the Modal Properties of Circular Photonic Crystal Fiber," Progress In Electromagnetics Research M, Vol. 115, 1-10, 2023.
doi:10.2528/PIERM22110509
http://www.jpier.org/PIERM/pier.php?paper=22110509
References

1. Knight, J. C., "Photonic crystal fibres," Nature, Vol. 424, No. 6950, 847-851, 2003.
doi:10.1038/nature01940

2. Knight, J., T. Birks, P. S. J. Russell, and D. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Optics Letters, Vol. 21, No. 19, 1547-1549, 1996.
doi:10.1364/OL.21.001547

3. Xiao, L., W. Jin, and M. Demokan, "Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs," Optics Express, Vol. 15, No. 24, 15637-15647, 2007.
doi:10.1364/OE.15.015637

4. Zhang, L. and C. Yang, "A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores," IEEE Photonics Technology Letters, Vol. 16, No. 7, 1670-1672, 2004.
doi:10.1109/LPT.2004.828850

5. Yuan, J., G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, and Y. Han, "Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber,", Vol. 141, 659-670, 2013.

6. Baggett, J. C., T. M. Monro, K. Furusawa, and D. Richardson, "Comparative study of large-mode holey and conventional fibers," Optics Letters, Vol. 26, No. 14, 1045-1047, 2001.
doi:10.1364/OL.26.001045

7. Podder, E., M. Hossain, R. H. Jibon, A. A.-M. Bulbul, and H. S. J. F. O. O. Mondal, "Chemical sensing through photonic crystal fiber: sulfuric acid detection,", Vol. 12, No. 4, 372-381, 2019.

8. Ouadah, M. C. E. and M. E. K. Chikh-Bled, "Novel high negative chromatic dispersion photonic crystal fiber with low confinement loss," Journal of Electrical and Electronics Engineering, Vol. 9, No. 1, 25, 2016.

9. Dadabayev, R., N. Shabairou, Z. Zalevsky, and D. Malka, "A visible light RGB wavelength demultiplexer based on silicon-nitride multicore PCF," Optics & Laser Technology, Vol. 111, 411-416, 2019.
doi:10.1016/j.optlastec.2018.10.016

10. Rahman, Md. M., A. Khaleque, Md. T. Rahman, and F. Rabbi, "Gold-coated photonic crystal fiber based polarization filter for dual communication windows,", Vol. 461, 125293, 2020.

11. An, S., J. Lv, Z. Yi, C. Liu, L. Yang, F. Wang, Q. Liu, W. Su, X. Li, T. Sun, and P. K. Chu, "Ultra-short and dual-core photonic crystal fiber polarization splitter composed of metal and gallium arsenide,", Vol. 226, 165779, 2021.

12. Khan, K. R., S. Bidnyk, and T. J. Hall, "Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,", Vol. 22, 179-189, 2012.

13. Agbemabiese, P. A. and E. K. Akowuah, "Numerical analysis of photonic crystal fiber of ultra-high birefringence and high nonlinearity," Scientific Reports, Vol. 10, No. 1, 1-12, 2020.
doi:10.1038/s41598-020-77114-x

14. Yu, F., Z. Wang, W. Yang, and C. Lv, "Characteristics of highly birefringent photonic crystal fiber with defected core and equilateral pentagon architecture," Advances in Opto Electronics, 2016.

15. Ahmed, K., B. K. Paul, Md. S. Islam, S. Chowdhury, S. Sen, Md. I. Islam, and S. Asaduzzaman, "Ultra high birefringence and lower beat length for square shape PCF: Analysis effect on rotation angle and eccentricity," Alexandria Engineering Journal, Vol. 57, No. 4, 3683-3691, 2018.
doi:10.1016/j.aej.2018.01.018

16. Zhang, P., J. Zhang, P. Yang, S. Dai, X. Wang, and W. Zhang, "Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling," Optical Fiber Technology, Vol. 26, 176-179, 2015.
doi:10.1016/j.yofte.2015.09.002

17. Pysz, D., I. Kujawa, R. Stepien, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, and R. Buczynski, "Stack and draw fabrication of soft glass microstructured fiber optics," Bulletin of the Polish Academy of Sciences. Technical Sciences, Vol. 62, No. 4, 2014.
doi:10.2478/bpasts-2014-0073

18. Liu, Y., X. Jing, H. Chen, J. Li, Y. Guo, S. Zhang, H. Li, and S. Li, "Highly sensitive temperature sensor based on Sagnac interferometer using photonic crystal fiber with circular layout,", Vol. 314, 112236, 2020.

19. Sacher, R. and W. Sacher, "Optical liquids," CRC Handbook of Laser Science and Technology, 97-112, CRC Press, 2020.
doi:10.1201/9781003067955-8

20. Garlinska, M., A. Pregowska, K. Masztalerz, and M. J. F. I. Osial, "From mirrors to free-space optical communication --- historical aspects in data transmission,", Vol. 12, No. 11, 179, 2020.

21. Portosi, V., D. Laneve, M. C. Falconi, and F. J. S. Prudenzano, "Advances on photonic crystal fiber sensors and applications,", Vol. 19, No. 8, 1892, 2019.

22. Bing, P., J. Sui, G. Wu, X. Guo, Z. Li, L. Tan, and J. Yao, "Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors,", Vol. 15, No. 4, 1071-1076, 2020.

23. Sultana, J., Md. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, "Terahertz detection of alcohol using a photonic crystal fiber sensor,", Vol. 57, No. 10, 2426-2433, 2018.

24. Van Lanh, C., K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczynski, and J. Pniewski, "Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation," Laser Physics, Vol. 29, No. 7, 075107, 2019.
doi:10.1088/1555-6611/ab2115

25. Debbal, M., M. Bouregaa, H. Chikh-Bled, M. E. K. Chikh-Bled, and M. C. E. Ouadah, "In fluence of temperature on the chromatic dispersion of photonic crystal fiber by infiltrating the air holes with water," Journal of Optical Communications, Vol. 1, No. ahead-of-print, 2019.

26. Wang, C., P. P. Shum, D. J. J. Hu, Y.-C. Chen, Z. Xu, S. Liu, Y. Zhang, Y. Zhu, Y. Zheng, and B. Li, "Two-core photonic crystal fiber with selective liquid infiltration in the central air hole for temperature sensing,", Vol. 3, No. 8, 2264-2276, 2020.

27. Saitoh, K. and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE Journal of Quantum Electronics, Vol. 38, No. 7, 927-933, 2002.
doi:10.1109/JQE.2002.1017609

28. Habib, M. S., M. S. Rana, M. Moniruzzaman, M. S. Ali, and N. Ahmed, "Highly birefringent broadband-dispersion-compensating photonic crystal fibre over the E+ S+ C+ L+ U wavelength bands," Optical Fiber Technology, Vol. 20, No. 5, 527-532, 2014.
doi:10.1016/j.yofte.2014.06.004

29. Huang, T., Q. Wei, Z. Wu, X. Wu, Xu, P. Huang, Z. Cheng, and P. P. Shum, "Ultra-flattened normal dispersion fiber for supercontinuum and dissipative soliton resonance generation at 2 µm," IEEE Photonics Journal, Vol. 11, No. 3, 1-11, 2019.

30. Begum, F. and P. E. Abas, "Near infrared supercontinuum generation in silica based photonic crystal fiber,", Vol. 89, 149-159, 2019.

31. Upadhyay, A., S. Singh, Y. Prajapati, and R. Tripathi, "Numerical analysis of large negative dispersion and highly birefringent photonic crystal fiber," Optik, Vol. 218, 164997, 2020.
doi:10.1016/j.ijleo.2020.164997