1. Hiergeist, R., W. Andra, N. Buske, R. Hergt, I. Hilger, U. Richter, and W. Kaiser, "Application of magnetite ferrofluids for hyperthermia," J. Magn. Magn. Mater., Vol. 201, No. 1, 420-422, 1999.
doi:10.1016/S0304-8853(99)00145-6 Google Scholar
2. Hergt, R., W. Andra, C. G. d'Ambly, I. Hilger, W. A. Kaiser, U. Richter, and H. G. Schmidt, "Physical limits of hyperthermia using magnetite fine particles," IEEE Trans. Magn., Vol. 34, No. 5, 3745-3754, 1998.
doi:10.1109/20.718537 Google Scholar
3. Carrey, J., B. Mehdaoui, and M. Respaud, "Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization," J. Appl. Phys., Vol. 109, 083921, 2011.
doi:10.1063/1.3551582 Google Scholar
4. Chen, R., G. Romero, M. G. Christiansen, A. Mohr, and P. Anikeeva, "Wireless magnetothermal deep brain stimulation," Science, Vol. 347, No. 6229, 1477-1480, 2015.
doi:10.1126/science.1261821 Google Scholar
5. Wang, H., S. C. Zhao, J. Zhou, K. P. Zhu, X. Cui, W. H. Huang, M. N. Rahaman, C. Q. Zhang, and D. P. Wang, "Biocompatibility and osteogenic capacity of borosilicate bioactive glass scaffolds loaded with Fe3O4 magnetic nanoparticles," J. Mater. Chem. B, Vol. 3, No. 21, 4377-4387, 2015.
doi:10.1039/C5TB00062A Google Scholar
6. Beck, M. M., C. Lammel, and B. Gleich, "Improving heat generation of magnetic nanoparticles by pre-orientation of particles in a static three tesla magnetic field," J. Magn. Magn. Mater., Vol. 427, 195-199, 2017.
doi:10.1016/j.jmmm.2016.11.005 Google Scholar
7. Dutz, S. and R. Hergt, "Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy," Int. J. Hyperther., Vol. 29, No. 8, 790-800, 2013.
doi:10.3109/02656736.2013.822993 Google Scholar
8. Mura, S., J. Nicolas, and P. Couvreur, "Stimuli-responsive nanocarriers for drug delivery," Nat. Mater., Vol. 12, No. 11, 991-1003, 2013.
doi:10.1038/nmat3776 Google Scholar
9. Bao, J., S. Guo, X. Zu, Y. Zhuang, D. Fan, Y. Zhang, Y. Shi, Z. Ji, J. Cheng, and X. Pang, "Polypyrrole-coated magnetite vortex nanoring for hyperthermia-boosted photothermal/magnetothermal tumor ablation under photoacoustic/magnetic resonance guidance," Front Bioeng. Biotechnol., Vol. 9, 721617, 2021.
doi:10.3389/fbioe.2021.721617 Google Scholar
10. Thirunavukkarasu, G. K., K. Cherukula, H. Lee, Y. Y. Jeong, I.-K. Park, and J. Y. Lee, "Magnetic field-inducible drug-eluting nanoparticles for image-guided thermo-chemotherapy," Biomaterials, Vol. 180, 240-252, 2018.
doi:10.1016/j.biomaterials.2018.07.028 Google Scholar
11. Feng, X. H., F. Gao, Y. J. Zheng, and , "Thermally modulated photoacoustic imaging with super-paramagnetic iron oxide nanoparticles," Opt. Lett., Vol. 39, No. 12, 3414-3417, 2014.
doi:10.1364/OL.39.003414 Google Scholar
12. Piao, D. Q., R. A. Towner, N. Smith, and W. R. Chen, "Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: A theoretical feasibility analysis," Med. Phys., Vol. 40, No. 6, 063301, 2013.
doi:10.1118/1.4804056 Google Scholar
13. Yuan, C., B. H. Qin, H. Qin, and D. Xing, "Increasing dielectric loss of a graphene oxide nanoparticle to enhance the microwave thermoacoustic imaging contrast of breast tumor," Nanoscale, Vol. 11, No. 46, 22222-22229, 2019.
doi:10.1039/C9NR06549K Google Scholar
14. Feng, X. H., F. Gao, and Y. J. Zheng, "Magnetically mediated thermoacoustic imaging toward deeper penetration," Appl. Phys. Lett., Vol. 103, 083704, 2013.
doi:10.1063/1.4819391 Google Scholar
15. Wen, L., S. Yang, J. Zhong, Q. Zhou, and D. Xing, "Thermoacoustic imaging and therapy guidance based on ultra-short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nanoparticles," Theranostics, Vol. 7, No. 7, 1976-1989, 2017.
doi:10.7150/thno.17846 Google Scholar
16. Feng, X. H., F. Gao, and Y. J. Zheng, "Modulatable magnetically mediated thermoacoustic imaging with magnetic nanoparticles," Appl. Phys. Lett., Vol. 106, 153702, 2015.
doi:10.1063/1.4918582 Google Scholar
17. Li, Y., G. Liu, J. Song, and H. Xia, "Imaging method and experimental research on thermoacoustic imaging with current injection," High Voltage Engineering, Vol. 46, No. 12, 4113-4119, 2020. Google Scholar
18. Nan, H. and A. Arbabian, "Peak-power-limited frequency-domain microwave-induced thermoacoustic imaging for handheld diagnostic and screening tools," IEEE Trans. Microwave Theory Tech., Vol. 65, No. 7, 2607-2616, 2017.
doi:10.1109/TMTT.2016.2637909 Google Scholar
19. Daqing, P., "Magneto-thermal-acoustic differential-frequency imaging of magnetic nanoparticle with magnetic spatial localization: A theoretical prediction," Energy Based Treatment of Tissue and Assessment IX, Proceedings of SPIE 10066, 2017. Google Scholar
20. Zheng, Y., F. Gao, and X. Feng, "Electromagnetic acoustics sensing and imaging for biomedical applications," 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), 1-4, 2014. Google Scholar
21. Minghua, X. and L. V. Wang, "Time-domain reconstruction for thermoacoustic tomography in a spherical geometry," IEEE Trans. Med. Imaging, Vol. 21, No. 7, 814-822, 2002.
doi:10.1109/TMI.2002.801176 Google Scholar
22. Liu, H., Y. Li, and G. Liu, "Thermoacoustic tomography from magnetic nanoparticles by single-pulse magnetic field," Med. Phys., Vol. 49, No. 1, 521-531, 2022.
doi:10.1002/mp.15383 Google Scholar
23. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues. 1. Literature survey," Phys. Med. Biol., Vol. 41, No. 11, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
24. Li, Y., G. Liu, J. Song, and H. Xia, "Influence exerted by bone-containing target body on thermoacoustic imaging with current injection," Chin. Phys. B, Vol. 28, No. 4, 044302, 2019.
doi:10.1088/1674-1056/28/4/044302 Google Scholar
25. Rosensweig, R. E., "Heating magnetic fluid with alternating magnetic field," J. Magn. Magn. Mater., Vol. 252, 370-374, 2002.
doi:10.1016/S0304-8853(02)00706-0 Google Scholar
26. Li, Y., G. Liu, and J. Song, "Magnetically mediated thermoacoustic imaging with single coil based on non-uniform magnetic fild excitation," J. Appl. Phys., Vol. 128, 174901, 2020.
doi:10.1063/5.0017237 Google Scholar