1. Edfors, O. and A. J. Johansson, "Is Orbital Angular Momentum (OAM) based radio communication an unexploited area?," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1126-1131, Feb. 2012.
doi:10.1109/TAP.2011.2173142 Google Scholar
2. Morabito, A. F., L. Di Donato, and T. Isernia, "Orbital angular momentum antennas," IEEE Antennas and Propagation Magazine, Vol. 60, No. 2, 59-67, Apr. 2018.
doi:10.1109/MAP.2018.2796445 Google Scholar
3. Liu, K., X. Li, Y. Gao, H. Wang, and Y. Cheng, "Microwave imaging of spinning object using orbital angular momentum," Journal of Applied Physics, Vol. 122, No. 12, Art. No. 124903, Sep. 28, 2017. Google Scholar
4. Wang, J., K. Liu, Y. Cheng, and H. Wang, "Vortex SAR imaging method based on OAM beams design," IEEE Sensors Journal, Vol. 19, No. 24, 11873-11879, Dec. 15, 2019.
doi:10.1109/JSEN.2019.2937976 Google Scholar
5. Barbuto, M., A. Alu, F. Bilotti, and A. Toscano, "Dual-circularly polarized topological patch antenna with pattern diversity," IEEE Access, Vol. 9, 48769-48776, 2021.
doi:10.1109/ACCESS.2021.3068792 Google Scholar
6. Andersen, J. M., S. N. Alperin, A. A. Voitiv, W. G. Holtzmann, J. T. Gopinath, and M. E. Siemens, "Characterizing vortex beams from a spatial is light modulator with collinear phase-shifting holography," Applied Optics, Vol. 58, No. 2, 404-409, Jan. 10, 2019.
doi:10.1364/AO.58.000404 Google Scholar
7. Tamagnone, M. C. Craeye, and J. Perruisseau-Carrier, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 11, 2012.
doi:10.1088/1367-2630/14/11/118001 Google Scholar
8. Kaniewski, P., W. Komorniczak, C. Lesnik, et al. "S-band and Ku-band SAR system development for UAV-based applications," Metrology and Measurement Systems, Vol. 26, No. 1, 53-64, 2019. Google Scholar
9. Lv, Z. X., X. L. Qiu, Y. Cheng, S. T. Shangguan, F. F. Li, and C. B. Ding, "Multi-rotor UAV-borne PolInSAR data processing and preliminary analysis of height inversion in urban area," Remote Sensing, Vol. 14, No. 9, Art. No. 2161, May 2022. Google Scholar
10. Iqbal, M. N., M. F. M. Yusoff, M. K. A. Rahim, M. R. Hamid, Z. Johari, and H. U. Rahman, "A high gain and compact transmitarray antenna for Ku-band satellite communications," Electromagnetics, Vol. 41, No. 5, 331-343, Jul. 4, 2021.
doi:10.1080/02726343.2021.1962603 Google Scholar
11. Abdulkarim, Y. I., L. Deng, H. N. Awl, et al. "Design of a broadband coplanar waveguide-fed antenna incorporating organic solar cells with 100% insolation for Ku band satellite communication," Materials (Basel), Vol. 13, No. 1, Art. No. 142, Dec. 30, 2019. Google Scholar
12. Isakov, D., Y. Wu, B. Allen, P. S. Grant, C. J. Stevens, and G. J. Gibbons, "Evaluation of the Laguerre-Gaussian mode purity produced by three-dimensional-printed microwave spiral phase plates," Royal Society Open Science, Vol. 7, No. 7, Art. No. 200493, Jul. 22, 2020. Google Scholar
13. Zhang, Y.-M. and J.-L. Li, "An orbital angular momentum-based array for in-band full-duplex communications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 417-421, Mar. 2019.
doi:10.1109/LAWP.2019.2893035 Google Scholar
14. Xin, M., R. Xie, G. Zhai, et al. "Full control of dual-band vortex beams using a high-efficiency single-layer bi-spectral 2-bit coding metasurface," Optics Express, Vol. 28, No. 12, 17374-17383, Jun. 8, 2020.
doi:10.1364/OE.394571 Google Scholar
15. Qin, F., S. Gao, W.-C. Cheng, Y. Liu, H.-L. Zhang, and G. Wei, "A high-gain transmitarray for generating dual-mode OAM beams," IEEE Access, Vol. 6, 61006-61013, 2018.
doi:10.1109/ACCESS.2018.2875680 Google Scholar
16. Iqbal, S., S. Liu, J. Luo, L. Zhang, H. A. Madni, and T. J. Cui, "Controls of transmitted electromagnetic waves for diverse functionalities using polarization-selective dual-band 2 bit coding metasurface," Journal of Optics, Vol. 22, No. 1, Art. No. 015104, Jan. 2020. Google Scholar
17. Iqbal, S., J. Luo, Q. Ma, et al. "Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces," Journal of Physics D - Applied Physics, Vol. 54, No. 3, Art. No. 035305, Jan. 21, 2021. Google Scholar
18. Shahmirzadi, A. V., Z. Badamchi, B. Badamchi, and H. Subbaraman, "Generating concentrically embedded spatially divided OAM carrying vortex beams using transmitarrays," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8436-8448, 2021.
doi:10.1109/TAP.2021.3090860 Google Scholar
19. Shahmirzadi, A. V. and A. A. Kishk, "OAM carrying vortex beam mode interconversion using modular cascaded transmitarrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 7, 3591-3605, 2022.
doi:10.1109/TMTT.2022.3173748 Google Scholar
20. Lv, H. H., Q. L. Huang, X. J. Yi, J. Q. Hou, and X. W. Shi, "Low-profile transmitting metasurface using single dielectric substrate for OAM generation," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 881-885, May 2020 (in English).
doi:10.1109/LAWP.2020.2983400 Google Scholar
21. Bai, X. D., "High-efficiency transmissive metasurface for dual-polarized dual-mode OAM generation," Results in Physics, Vol. 18, Sep. 2020. Google Scholar
22. Akram, M. R., X. Bai, R. Jin, G. A. E. Vandenbosch, M. Premaratne, and W. Zhu, "Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4650-4658, 2019.
doi:10.1109/TAP.2019.2905777 Google Scholar
23. Arbabi, A. and A. Faraon, "Fundamental limits of ultrathin metasurfaces," Scientific Reports, Vol. 7, 43722, Mar. 6, 2017. Google Scholar
24. Zhang, K., Y. Yuan, D. Zhang, et al. "Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region," Opt. Express, Vol. 26, No. 2, 1351-1360, Jan. 22, 2018.
doi:10.1364/OE.26.001351 Google Scholar
25. Jiang, S., C. Chen, H. Zhang, and W. Chen, "Achromatic electromagnetic metasurface for generating a vortex wave with Orbital Angular Momentum (OAM)," Opt Express, Vol. 26, No. 5, 6466-6477, Mar. 5, 2018.
doi:10.1364/OE.26.006466 Google Scholar
26. Bouchard, F., I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, "Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges," Applied Physics Letters, Vol. 105, No. 10, Art. No. 101905, Sep. 8, 2014. Google Scholar
27. Chen, M. L. N., L. J. Jiang, and W. E. I. Sha, "Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency," Journal of Applied Physics, Vol. 119, No. 6, 2016. Google Scholar
28. Chen, M. L. N., L. J. Jiang, and W. E. I. Sha, "Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 1, 396-400, 2017.
doi:10.1109/TAP.2016.2626722 Google Scholar
29. Jack, B., M. J. Padgett, and S. Franke-Arnold, "Angular diffraction," New Journal of Physics, Vol. 10, No. 10, 2008.
doi:10.1088/1367-2630/10/10/103013 Google Scholar
30. Lin, M., J. Yi, J. Wang, et al. "Single-layer re-organizable all-dielectric meta-lens platform for arbitrary transmissive phase manipulation at millimeter-wave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 3, 2059-2069, Mar. 2022.
doi:10.1109/TAP.2021.3111163 Google Scholar
31. Wang, Y., K. Zhang, Y. Yuan, et al. "Generation of high-efficiency vortex beam carrying OAM mode based on miniaturized element frequency selective surfaces," IEEE Transactions on Magnetics, Vol. 55, No. 10, 1-4, 2019. Google Scholar
32. Qin, F., R. Song, W. Cheng, and H. Zhang, "Multibeam OAM transmitarray with stable vortex property based on bifocal method," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 9, 1601-1605, Sep. 2021.
doi:10.1109/LAWP.2021.3084604 Google Scholar
33. Wang, X., Y. Chen, S. Zheng, and X. Zhang, "Reconfigurable OAM antenna based on sub-wavelength phase modulation structure," IET Microwaves Antennas & Propagation, Vol. 12, No. 3, 354-359, Feb. 28, 2018.
doi:10.1049/iet-map.2017.0629 Google Scholar
34. Wang, Y., K. Zhang, Y. Yuan, et al. "Planar vortex beam generator for circularly polarized incidence based on FSS," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1514-1522, Mar. 2020.
doi:10.1109/TAP.2019.2938666 Google Scholar