1. Soliman, G. A., "Dietary cholesterol and the lack of evidence in cardiovascular disease," Nutrients, Vol. 10, No. 6, MDPI AG, 2018, [doi: 10.3390/nu10060780].
doi:10.3390/nu10060780 Google Scholar
2. Russell, R., "Atherosclerosis-an inflammatory disease," N. Engl. J. Med., Vol. 340, 115-126, 1999, [doi: 10.1056/NEJM199901143400207]. Google Scholar
3. Soutar, A. K. and R. P. Naoumova, "Mechanisms of disease: Genetic causes of familial hypercholesterolemia," Nature Clinical Practice Cardiovascular Medicine, Vol. 4, No. 4, 2007, [doi: 10.1038/ncpcardio0836].
doi:10.1038/ncpcardio0836 Google Scholar
4. McNamara, D. J., "Dietary cholesterol and atherosclerosis," Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, Vol. 1529, 1-3, 2000, [doi: 10.1016/S1388-1981(00)00156-6]. Google Scholar
5. Nguyen, H. B., H. D. Le, V. Q. Nguyen, T. T. T. Ngo, Q. P. Do, X. N. Nguyen, and N. M. Phan, "Development of the layer-by-layer biosensor using graphene films: Application for cholesterol determination," Advances in Natural Sciences: Nanoscience and Nanotechnology, Vol. 4, No. 1, 2013, [doi: 10.1088/2043-6262/4/1/015013]. Google Scholar
6. Budiyanto, M., Suhariningsih, and M. Yasin, "Cholesterol detection using optical fiber sensor based on intensity modulation," Journal of Physics: Conference Series, Vol. 853, No. 1, 2017, [doi: 10.1088/1742-6596/853/1/012008]. Google Scholar
7. Razo-Medina, D. A., E. A. Méndez, and M. T. Durán, "Thin film of sol-gel deposited in photonic crystal fiber for cholesterol detection," Nanosensors, Biosensors, and Info-Tech Sensors and Systems, Vol. 9434, 2015, [doi: 10.1117/12.2084280]. Google Scholar
8. Goyal, A. K., A. Kumar, and Y. Massoud, "Thermal stability analysis of surface wave assisted bio-photonic sensor," Photonics, Vol. 9, No. 5, 324, 2022, [doi: 10.3390/photonics9050324].
doi:10.3390/photonics9050324 Google Scholar
9. Goyal, A. K. and J. Saini, "Performance analysis of Bloch surface wave-based sensor using transition metal dichalcogenides," Applied Nanoscience (Switzerland), Vol. 10, No. 11, 2020, [doi: 10.1007/s13204-020-01538-0]. Google Scholar
10. Goyal, A. K., H. S. Dutta, and S. Pal, "Development of uniform porous one-dimensional photonic crystal based sensor," Optik (Stuttg), Vol. 223, 2020, [doi: 10.1016/j.ijleo.2020.165597]. Google Scholar
11. Nouman, W. M., S. E-S. Abd El-Ghany, S. M. Sallam, A.-F. B. Dawood, and A. H. Aly, "Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal," Opt. Quantum Electron, Vol. 52, No. 6, 2020, [doi: 10.1007/s11082-020-02409-2].
doi:10.1007/s11082-020-02409-2 Google Scholar
12. Goyal, A. K., "Design analysis of one-dimensional photonic crystal-based structure for hemoglobin concentration measurement," Progress In Electromagnetics Research M, Vol. 97, 2020, [doi: 10.2528/pierm20080601]. Google Scholar
13. Dash, D., J. Saini, A. K. Goyal, and Y. Massoud, "Exponentially index modulated nanophotonic resonator for high-performance sensing applications," Scientific Report, Vol. 13, 1431, 2023, [https://doi.org/10.1038/s41598-023-28235-6].
doi:10.1038/s41598-023-28235-6 Google Scholar
14. Robertson, W. M. and M. S. May, "Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays," Appl. Phys. Lett., Vol. 74, No. 13, 1800-1802, American Institute of Physics Inc., 1999, [doi: 10.1063/1.123090].
doi:10.1063/1.123090 Google Scholar
15. Goyal, A. K., H. S. Dutta, and S. Pal, "Porous photonic crystal structure for sensing applications," J. Nanophotonics, SPIE-Intl. Soc. Optical Eng., Vol. 12, No. 4, 1, 2018, [doi: 10.1117/1.jnp.12.040501]. Google Scholar
16. Dutta, H. S., A. K. Goyal, and S. Pal, "Analysis of dispersion diagram for high performance refractive index sensor based on photonic crystal waveguides," Photonics Nanostruct, Vol. 23, 2017, [doi: 10.1016/j.photonics.2016.11.004]. Google Scholar
17. Goyal, A. K., H. S. Dutta, and S. Pal, "Performance optimization of photonic crystal resonator based sensor," Optical and Quantum Electronics, Vol. 48, 431, 2016, [doi: 10.1007/s11082-016-0701-0].
doi:10.1007/s11082-016-0701-0 Google Scholar
18. Panda, A. and P. D. Pukhrambam, "Analysis of GaN-based 2D photonic crystal sensor for real-time detection of alcohols," Brazilian Journal of Physics, Vol. 51, No. 3, 481-492, Springer, 2021, [doi: 10.1007/s13538-021-00856-0].
doi:10.1007/s13538-021-00856-0 Google Scholar
19. Aly, A. H., Z. A. Zaky, A. S. Shalaby, A. M. Ahmed, and D. Vigneswaran, "Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor," Phys. Scr., Vol. 95, No. 3, Institute of Physics Publishing, 2020, [doi: 10.1088/1402-4896/ab53f5].
doi:10.1088/1402-4896/ab53f5 Google Scholar
20. Banerjee, A., "Enhancement in sensitivity of blood glucose sensor by using 1D defect ternary photonic band gap structures," Journal of Optics, Vol. 48, No. 2, India, 2019, [doi: 10.1007/s12596-019-00521-5].
doi:10.1007/s12596-019-00521-5 Google Scholar
21. Goyal, A. K. and S. Pal, "Design analysis of Bloch surface wave-based sensor for haemoglobin concentration measurement," Applied Nanoscience (Switzerland), Vol. 10, No. 9, 3639-3647, Springer Science and Business Media Deutschland GmbH, 2020, [doi: 10.1007/s13204-020-01437-4].
doi:10.1007/s13204-020-01437-4 Google Scholar
22. Aly, A. H., D. Mohamed, M.A. Mohaseb, and N. S. Abd El-Gawaad, "Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal," RSC Adv., Vol. 10, No. 53, 31765-31772, Royal Society of Chemistry, 2020, [doi: 10.1039/d0ra05448h].
doi:10.1039/D0RA05448H Google Scholar
23. Goyal, A. K., H. S. Dutta, and S. Pal, "Design and analysis of photonic crystal micro-cavity based optical sensor platform," AIP Conference Proceedings, Vol. 1724, 2016, [doi: 10.1063/1.4945125]. Google Scholar
24. Yeh, P. and M. Hendry, "Optical waves in layered media," Phys. Today, Vol. 43, No. 1, 1990, [doi: 10.1063/1.2810419].
doi:10.1063/1.2810419 Google Scholar
25. Goyal, A. K., M. Husain, and Y. Y. Massoud, "Analysis of interface mode localization in disordered photonic crystal structure," J. Nanophoton., Vol. 16, No. 4, 046007, 2022, [doi: 10.1117/1.JNP.16.046007].
doi:10.1117/1.JNP.16.046007 Google Scholar
26. Dhinaa, A. N. and P. K. Palanisamy, "Z-scan technique for measurement of total cholesterol and triglycerides in blood," Journal of Innovative Optical Health Sciences, Vol. 2, No. 3, 295-301, 2009, [https://doi.org/10.1142/S1793545809000565].
doi:10.1142/S1793545809000565 Google Scholar
27. Edappadikkunnummal, S., R. C. Vasudevan, S. Dinesh, S. Thomas, N. R. Desai, and S. Kaniyarakkal, "Detection of hemoglobin concentration based on defective one-dimensional photonic crystals," Photonics, Vol. 9, No. 9, 660, 2022, [https://doi.org/10.3390/photonics9090660].
doi:10.3390/photonics9090660 Google Scholar
28. Pathania, P. and M. S. Shishodia, "Gain-assisted transition metal ternary nitrides (Ti1-xZrxN) core-shell based sensing of waterborne bacteria in drinking water," Plasmonics, Vol. 14, 1435-1442, 2019, https://doi.org/10.1007/s11468-019-00927-8.
doi:10.1007/s11468-019-00927-8 Google Scholar
29. Aly, A. H., S. K. Awasthi, A. M. Mohamed, M. Al-Dossari, Z. S. Matar, M. A. Mohaseb, N. S. Abd El-Gawaad, and A. F. Amin, "1D reconfigurable bistable photonic device composed of phase change material for detection of reproductive female hormones," Phys. Scr., Vol. 96, No. 12, 125533, 2021, [doi: 10.1088/1402-4896/ac3efa].
doi:10.1088/1402-4896/ac3efa Google Scholar
30. Sharma, S. and A. Kumar, "Design of a biosensor for the detection of dengue virus using 1D photonic crystals," Plasmonics, Vol. 17, No. 2, 675-680, 2022, [https://doi.org/10.1007/s11468-021-01555-x].
doi:10.1007/s11468-021-01555-x Google Scholar
31. Taya, S. A., A. Sharma, N. Doghmosh, and I. Colak, "Detection of water concentration in ethanol solution using a ternary photonic crystal-based sensor," Materials Chemistry and Physics, Vol. 279, 125772, 2022, [doi: 10.1016/j.matchemphys.2022.125772].
doi:10.1016/j.matchemphys.2022.125772 Google Scholar
32. Panda, A. and P. D. Pukhrambam, "Study of metal-porous GaN-based 1D photonic crystal tamm plasmon sensor for detection of fat concentrations in milk," Micro and Nanoelectronics Devices, Circuits and Systems, Vol. 904, 415-425, 2022, [https://doi.org/10.1007/978-981-19-2308-1_42]. Google Scholar