1. Robertson, W. M., "Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays," Journal of Lightwave Technology, Vol. 17, No. 11, 2103-2107, 1999, doi: 10.1109/50.802988.
doi:10.1109/50.802988 Google Scholar
2. Goyal, A. K. and J. Saini, "Performance analysis of Bloch surface wave based sensor using transition metal dichalcogenides," Applied Nanoscience, Vol. 10, No. 11, 4307-4313, 2020.
doi:10.1007/s13204-020-01538-0 Google Scholar
3. Goyal, A. K. and Y. Massoud, "Interface edge mode confinement in dielectric-based quasi-periodic photonic crystal structure," Photonics, Vol. 9, No. 676, 2022, https://doi.org/10.3390/photonics9100676. Google Scholar
4. Goyal, A. K., M. Hussain, and Y. Massoud, "Analysis of interface mode localization in disordered photonic crystal structure," J. Nanophoton., Vol. 16, No. 4, 046007, 2022, DOI: 10.1117/1.JNP.16.046007.
doi:10.1117/1.JNP.16.046007 Google Scholar
5. Goyal, A. K. and S. Pal, "Design and simulation of high-sensitive gas sensor using a ring-shaped photonic crystal waveguide," Phys. Scr., Vol. 90, 2015, https://doi.org/10.1088/0031-8949/90/2/025503. Google Scholar
6. Goyal, A. K., "Design analysis of one-dimensional photonic crystal based structure for hemoglobin concentration measurement," Progress In Electromagnetics Research M, Vol. 97, 2020, https://doi.org/10.2528/pierm20080601. Google Scholar
7. Kurt, H. and D. S. Citrin, "Graded index photonic crystals," Optics Express, Vol. 15, No. 3, 1240, 2007, https://doi.org/10.1364/OE.15.001240.
doi:10.1364/OE.15.001240 Google Scholar
8. Zhu, Q., L. Jin, and Y. Fu, "Graded index photonic crystals: A review," Ann. Phys., Vol. 527, 205-218, 2015.
doi:10.1002/andp.201400195 Google Scholar
9. Singh, B. K., M. K. Chaudhari, and P. C. Pandey, "Photonic and omnidirectional band gap engineering in one-dimensional photonic crystals consisting of linearly graded index material," Journal of Lightwave Technology, Vol. 34, 2431-2438, 2016, https://doi.org/10.1109/JLT.2016.2531900.
doi:10.1109/JLT.2016.2531900 Google Scholar
10. Russel, P. S. J. and T. A. Birks, "Hamiltonian optics of nonuniform photonic crystals," Journal of Lightwave Technology, Vol. 17, 1982-1988, 1999.
doi:10.1109/50.802984 Google Scholar
11. Centeno, E. and D. Cassagne, "Graded photonic crystals," Opt. Lett., Vol. 30, 2278-2280, 2005, https://doi.org/10.1364/OL.30.002278.
doi:10.1364/OL.30.002278 Google Scholar
12. Centeno, E., D. Cassagne, and J. P. Albert, "Mirage and superbending effect in two dimensional graded photonic crystals," Phys. Rev. B, Vol. 73, No. 23, 235119, 2006, https://doi.org/10.1103/PhysRevB.73.235119.
doi:10.1103/PhysRevB.73.235119 Google Scholar
13. Singh, B. K., A. Bijalwan, P. C. Pandey, and V. Rastogi, "Multi-channel photonic bandgap consequences in one-dimensional linear, exponential, and hyperbolic graded-index photonic crystals," Journal of the Optical Society of America B, Vol. 37, 523, 2020, https://doi.org/10.1364/josab.381681.
doi:10.1364/JOSAB.381681 Google Scholar
14. Belhadj, W. and A. N. Al-Ahmadi, "Tunable narrowband terahertz multichannel filter based on one-dimensional graphene-dielectric photonic crystal," Optical and Quantum Electronics, Vol. 53, 2021, https://doi.org/10.1007/s11082-020-02642-9. Google Scholar
15. Alagappan, M., S. Immanuel, R. Sivasubramanian, and A. Kandaswamy, "Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network," Arabian Journal of Chemistry, Vol. 13, 2001-2010, 2020, https://doi.org/10.1016/j.arabjc.2018.02.018.
doi:10.1016/j.arabjc.2018.02.018 Google Scholar
16. Nguyen, P. T., Y. I. Kim, and M. I. Kim, "Reagent-free colorimetric cholesterol test strip based on self color-changing property of nanoceria," Frontiers in Chemistry, Vol. 8, 2020, https://doi.org/10.3389/fchem.2020.00798. Google Scholar
17. Yantih, N., W. Destiana, and D. K. Pratami, "Anti-choloseterol activities of white (Raphanus raphanistrum) and red (raphanus sativus) radish roots," International Journal of Applied Pharmaceutics, Vol. 13, No. 2, 2021, https://doi.org/10.22159/ijap.2021.v13s2.05. Google Scholar
18. Kolarič, L. and P. Šimko, "The comparison of hplc and spectrophotometric method for cholesterol determination," Potravinarstvo Slovak Journal of Food Sciences, Vol. 14, 2020, https://doi.org/10.5219/1302. Google Scholar
19. Ghosh, G., Handbook of Thermo-Optic Coefficients of Optical Materials with Applications, 1997.
20. Dash, D., J. Saini, A. K. Goyal, and Y. Massoud, "Exponentially index modulated nanophotonic resonator for high-performance sensing applications," Scientific Report, Vol. 13, 1431, 2023, https://doi.org/10.1038/s41598-023-28235-6.
doi:10.1038/s41598-023-28235-6 Google Scholar
21. Wiederseiner, S., N. Andreini, G. Epely-Chauvin, and C. Ancey, "Ancey Refractive-index and density matching in concentrated particle suspensions: A review," Exp. Fluids, Vol. 50, 1183-1206, 2011, https://doi.org/10.1007/s00348-010-0996-8.
doi:10.1007/s00348-010-0996-8 Google Scholar
22. Goyal, A. K., A. Kumar, and Y. Massoud, "Performance analysis of DAST material-assisted photonic-crystal-based electrical tunable optical filter," Crystals, Vol. 12, No. 7, 992, 2022.
doi:10.3390/cryst12070992 Google Scholar
23. Ratra, K., M. Singh, and A. K. Goyal, "Design and analysis of omni-directional solar spectrum reflector using one-dimensional photonic crystal," J. Nanophoton., Vol. 14, No. 2, 026005, 2020.
doi:10.1117/1.JNP.14.026005 Google Scholar
24. Singh, B. K., V. Bambole, V. Rastogi, and P. C. Pandey, "Multi-channel photonic bandgap engineering in hyperbolic graded index materials embedded one-dimensional photonic crystals," Opt. Laser Technol., Vol. 129, 2020, doi: 10.1016/j.optlastec.2020.106293. Google Scholar
25. Yeh, P. and M. Hendry, "Optical waves in layered media," Physics Today, Vol. 43, 1990, https://doi.org/10.1063/1.2810419. Google Scholar
26. Sharma, S., R. Kumar, K. S. Singh, A. Kumar, and V. Kumar, "Omnidirectional reflector using linearly graded refractive index profile of 1D binary and ternary photonic crystal," Optik (Stuttg), Vol. 126, No. 11-12, 1146-1149, 2015, doi: 10.1016/j.ijleo.2015.03.029.
doi:10.1016/j.ijleo.2015.03.029 Google Scholar
27. Ma, H., Cholesterol and Human Health. Nature and Science, Vol. 2, No. 4, (Supplement): 17-21, 2004.
28. Dhinaa, A. N. and P. K. Palanisamy, "Z-scan technique for measurement of total cholesterol and triglycerides in blood," Journal of Innovative Optical Health Sciences, Vol. 2, No. 3, 295-3012, 2009, https://doi.org/10.1142/S1793545809000565.
doi:10.1142/S1793545809000565 Google Scholar
29. Pathania, P. and M. S. Shishodia, "Fano resonance-based blood plasma monitoring and sensing using plasmonic nanomatryoshka," Plasmonics, Vol. 16, No. 6, 2117-2124, 2021, doi: 10.1007/s11468-020-01343-z.
doi:10.1007/s11468-020-01343-z Google Scholar
30. Goyal, A. K., H. S. Dutta, and S. Pal, "Development of uniform porous one-dimensional photonic crystal based sensor," Optik, Vol. 223, 165597, 2020.
doi:10.1016/j.ijleo.2020.165597 Google Scholar
31. Meng, Q. Q., X. Zhao, C. Y. Lin, S. J. Chen, Y. C. Ding, and Z. Y. Chen, "Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film," Sensors, Vol. 17, No. 8, Switzerland, 2017, doi: 10.3390/s17081846. Google Scholar
32. Edappadikkunnummal, S., R. V. Chembra, S. Dinesh, et al. "Detection of hemoglobin concentration based on defective one-dimensional photonic crystals," Photonics, Vol. 9, 2022, https://doi.org/10.3390/photonics9090660. Google Scholar
33. Gowda, R. B., P. Sharan, and K. Saara, "1-Dimensional silicon photonic crystal pressure sensor for the measurement of low pressure," Results in Optics, Vol. 10, 2023, doi: 10.1016/j.rio.2023.100352. Google Scholar
34. Goyal, A. K., H. S. Dutta, and S. Pal, "Performance optimization of photonic crystal resonator based sensor," Optical and Quantum Electronics, Vol. 48, 431, 2016.
doi:10.1007/s11082-016-0701-0 Google Scholar
35. Dash, D. and J. Saini, "Sensitivity analysis of non-graded and graded index one dimensional cavity-based cholesterol sensor," Optical and Quantum Electronics, Vol. 55, 349, 2023, https://doi.org/10.1007/s11082-023-04587-1.
doi:10.1007/s11082-023-04587-1 Google Scholar
36. Panda, A., P. D. Pukhrambam, F. Wu, and W. Belhadj, "Graphene-based 1D defective photonic crystal biosensor for real-time detection of cancer cells," European Physical Journal Plus, Vol. 136, 2021, https://doi.org/10.1140/epjp/s13360-021-01796-z.
doi:10.1140/epjp/s13360-021-01796-z Google Scholar
37. Aly, A. H., S. K. Awasthi, D. Mohamed, et al. "Study on a one-dimensional defective photonic crystal suitable for organic compound sensing applications," RSC Advances, Vol. 11, 32973-32980, 2021, https://doi.org/10.1039/d1ra06513k.
doi:10.1039/D1RA06513K Google Scholar
38. Panda, A. and P. D. Pukhrambam, "Study of metal-porous GaN-based 1D photonic crystal tamm plasmon sensor for detection of fat concentrations in milk," Micro and Nanoelectronics Devices, Circuits and Systems, Vol. 904, 415-425, 2023, https://doi.org/10.1007/978-981-19-2308-1_42.
doi:10.1007/978-981-19-2308-1_42 Google Scholar
39. Panda, A. and P. D. Pukhrambam, "Investigation of defect based 1D photonic crystal structure for real-time detection of waterborne bacteria," Physica B: Condensed Matter, Vol. 607, 2021, https://doi.org/10.1016/j.physb.2021.412854. Google Scholar