Vol. 116
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-05-11
Hyperbolic Graded Index Biophotonic Cholesterol Sensor with Improved Sensitivity
By
Progress In Electromagnetics Research M, Vol. 116, 165-176, 2023
Abstract
A novel approach is presented to achieve improved sensing performance using a one-dimensional (1D) hyperbolic graded photonic crystal (PC). The graded structure achieves refractive index modulation that varies hyperbolically with layer depth, due to its graded index geometry. Porous materials are employed to facilitate analyte infiltration. The reflectivity and sensing performance of the proposed graded and non-graded geometry is evaluated using the transfer matrix method (TMM). The Sensing capability of the graded structure is evaluated analytically by infusing different analytes within the cavity, considering various cavity widths and incidence angles. At a 40-degree angle of incidence, the analytical results demonstrate that the suggested graded structure exhibits a maximum sensitivity of 469 nm/RIU, along with a detection limit and FOM of 9.1×10-3 and 125 RIU-1, respectively. The detailed electric field confinement of the graded geometry is also carried out at the interface. The proposed structure outperforms conventional non-graded structures with a 114% higher sensitivity. The bio-photonic design can easily be implemented and provides high performance compared to previous works that employ exponentially graded structures. The suggested biosensor can detect even minor fluctuations in the refractive index of blood serum samples with different cholesterol concentrations.
Supplementary Information
Citation
Diptimayee Dash, and Jasmine Saini, "Hyperbolic Graded Index Biophotonic Cholesterol Sensor with Improved Sensitivity," Progress In Electromagnetics Research M, Vol. 116, 165-176, 2023.
doi:10.2528/PIERM23032302
References

1. Robertson, W. M., "Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays," Journal of Lightwave Technology, Vol. 17, No. 11, 2103-2107, 1999, doi: 10.1109/50.802988.
doi:10.1109/50.802988        Google Scholar

2. Goyal, A. K. and J. Saini, "Performance analysis of Bloch surface wave based sensor using transition metal dichalcogenides," Applied Nanoscience, Vol. 10, No. 11, 4307-4313, 2020.
doi:10.1007/s13204-020-01538-0        Google Scholar

3. Goyal, A. K. and Y. Massoud, "Interface edge mode confinement in dielectric-based quasi-periodic photonic crystal structure," Photonics, Vol. 9, No. 676, 2022, https://doi.org/10.3390/photonics9100676.        Google Scholar

4. Goyal, A. K., M. Hussain, and Y. Massoud, "Analysis of interface mode localization in disordered photonic crystal structure," J. Nanophoton., Vol. 16, No. 4, 046007, 2022, DOI: 10.1117/1.JNP.16.046007.
doi:10.1117/1.JNP.16.046007        Google Scholar

5. Goyal, A. K. and S. Pal, "Design and simulation of high-sensitive gas sensor using a ring-shaped photonic crystal waveguide," Phys. Scr., Vol. 90, 2015, https://doi.org/10.1088/0031-8949/90/2/025503.        Google Scholar

6. Goyal, A. K., "Design analysis of one-dimensional photonic crystal based structure for hemoglobin concentration measurement," Progress In Electromagnetics Research M, Vol. 97, 2020, https://doi.org/10.2528/pierm20080601.        Google Scholar

7. Kurt, H. and D. S. Citrin, "Graded index photonic crystals," Optics Express, Vol. 15, No. 3, 1240, 2007, https://doi.org/10.1364/OE.15.001240.
doi:10.1364/OE.15.001240        Google Scholar

8. Zhu, Q., L. Jin, and Y. Fu, "Graded index photonic crystals: A review," Ann. Phys., Vol. 527, 205-218, 2015.
doi:10.1002/andp.201400195        Google Scholar

9. Singh, B. K., M. K. Chaudhari, and P. C. Pandey, "Photonic and omnidirectional band gap engineering in one-dimensional photonic crystals consisting of linearly graded index material," Journal of Lightwave Technology, Vol. 34, 2431-2438, 2016, https://doi.org/10.1109/JLT.2016.2531900.
doi:10.1109/JLT.2016.2531900        Google Scholar

10. Russel, P. S. J. and T. A. Birks, "Hamiltonian optics of nonuniform photonic crystals," Journal of Lightwave Technology, Vol. 17, 1982-1988, 1999.
doi:10.1109/50.802984        Google Scholar

11. Centeno, E. and D. Cassagne, "Graded photonic crystals," Opt. Lett., Vol. 30, 2278-2280, 2005, https://doi.org/10.1364/OL.30.002278.
doi:10.1364/OL.30.002278        Google Scholar

12. Centeno, E., D. Cassagne, and J. P. Albert, "Mirage and superbending effect in two dimensional graded photonic crystals," Phys. Rev. B, Vol. 73, No. 23, 235119, 2006, https://doi.org/10.1103/PhysRevB.73.235119.
doi:10.1103/PhysRevB.73.235119        Google Scholar

13. Singh, B. K., A. Bijalwan, P. C. Pandey, and V. Rastogi, "Multi-channel photonic bandgap consequences in one-dimensional linear, exponential, and hyperbolic graded-index photonic crystals," Journal of the Optical Society of America B, Vol. 37, 523, 2020, https://doi.org/10.1364/josab.381681.
doi:10.1364/JOSAB.381681        Google Scholar

14. Belhadj, W. and A. N. Al-Ahmadi, "Tunable narrowband terahertz multichannel filter based on one-dimensional graphene-dielectric photonic crystal," Optical and Quantum Electronics, Vol. 53, 2021, https://doi.org/10.1007/s11082-020-02642-9.        Google Scholar

15. Alagappan, M., S. Immanuel, R. Sivasubramanian, and A. Kandaswamy, "Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network," Arabian Journal of Chemistry, Vol. 13, 2001-2010, 2020, https://doi.org/10.1016/j.arabjc.2018.02.018.
doi:10.1016/j.arabjc.2018.02.018        Google Scholar

16. Nguyen, P. T., Y. I. Kim, and M. I. Kim, "Reagent-free colorimetric cholesterol test strip based on self color-changing property of nanoceria," Frontiers in Chemistry, Vol. 8, 2020, https://doi.org/10.3389/fchem.2020.00798.        Google Scholar

17. Yantih, N., W. Destiana, and D. K. Pratami, "Anti-choloseterol activities of white (Raphanus raphanistrum) and red (raphanus sativus) radish roots," International Journal of Applied Pharmaceutics, Vol. 13, No. 2, 2021, https://doi.org/10.22159/ijap.2021.v13s2.05.        Google Scholar

18. Kolarič, L. and P. Šimko, "The comparison of hplc and spectrophotometric method for cholesterol determination," Potravinarstvo Slovak Journal of Food Sciences, Vol. 14, 2020, https://doi.org/10.5219/1302.        Google Scholar

19. Ghosh, G., Handbook of Thermo-Optic Coefficients of Optical Materials with Applications, 1997.

20. Dash, D., J. Saini, A. K. Goyal, and Y. Massoud, "Exponentially index modulated nanophotonic resonator for high-performance sensing applications," Scientific Report, Vol. 13, 1431, 2023, https://doi.org/10.1038/s41598-023-28235-6.
doi:10.1038/s41598-023-28235-6        Google Scholar

21. Wiederseiner, S., N. Andreini, G. Epely-Chauvin, and C. Ancey, "Ancey Refractive-index and density matching in concentrated particle suspensions: A review," Exp. Fluids, Vol. 50, 1183-1206, 2011, https://doi.org/10.1007/s00348-010-0996-8.
doi:10.1007/s00348-010-0996-8        Google Scholar

22. Goyal, A. K., A. Kumar, and Y. Massoud, "Performance analysis of DAST material-assisted photonic-crystal-based electrical tunable optical filter," Crystals, Vol. 12, No. 7, 992, 2022.
doi:10.3390/cryst12070992        Google Scholar

23. Ratra, K., M. Singh, and A. K. Goyal, "Design and analysis of omni-directional solar spectrum reflector using one-dimensional photonic crystal," J. Nanophoton., Vol. 14, No. 2, 026005, 2020.
doi:10.1117/1.JNP.14.026005        Google Scholar

24. Singh, B. K., V. Bambole, V. Rastogi, and P. C. Pandey, "Multi-channel photonic bandgap engineering in hyperbolic graded index materials embedded one-dimensional photonic crystals," Opt. Laser Technol., Vol. 129, 2020, doi: 10.1016/j.optlastec.2020.106293.        Google Scholar

25. Yeh, P. and M. Hendry, "Optical waves in layered media," Physics Today, Vol. 43, 1990, https://doi.org/10.1063/1.2810419.        Google Scholar

26. Sharma, S., R. Kumar, K. S. Singh, A. Kumar, and V. Kumar, "Omnidirectional reflector using linearly graded refractive index profile of 1D binary and ternary photonic crystal," Optik (Stuttg), Vol. 126, No. 11-12, 1146-1149, 2015, doi: 10.1016/j.ijleo.2015.03.029.
doi:10.1016/j.ijleo.2015.03.029        Google Scholar

27. Ma, H., Cholesterol and Human Health. Nature and Science, Vol. 2, No. 4, (Supplement): 17-21, 2004.

28. Dhinaa, A. N. and P. K. Palanisamy, "Z-scan technique for measurement of total cholesterol and triglycerides in blood," Journal of Innovative Optical Health Sciences, Vol. 2, No. 3, 295-3012, 2009, https://doi.org/10.1142/S1793545809000565.
doi:10.1142/S1793545809000565        Google Scholar

29. Pathania, P. and M. S. Shishodia, "Fano resonance-based blood plasma monitoring and sensing using plasmonic nanomatryoshka," Plasmonics, Vol. 16, No. 6, 2117-2124, 2021, doi: 10.1007/s11468-020-01343-z.
doi:10.1007/s11468-020-01343-z        Google Scholar

30. Goyal, A. K., H. S. Dutta, and S. Pal, "Development of uniform porous one-dimensional photonic crystal based sensor," Optik, Vol. 223, 165597, 2020.
doi:10.1016/j.ijleo.2020.165597        Google Scholar

31. Meng, Q. Q., X. Zhao, C. Y. Lin, S. J. Chen, Y. C. Ding, and Z. Y. Chen, "Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film," Sensors, Vol. 17, No. 8, Switzerland, 2017, doi: 10.3390/s17081846.        Google Scholar

32. Edappadikkunnummal, S., R. V. Chembra, S. Dinesh, et al. "Detection of hemoglobin concentration based on defective one-dimensional photonic crystals," Photonics, Vol. 9, 2022, https://doi.org/10.3390/photonics9090660.        Google Scholar

33. Gowda, R. B., P. Sharan, and K. Saara, "1-Dimensional silicon photonic crystal pressure sensor for the measurement of low pressure," Results in Optics, Vol. 10, 2023, doi: 10.1016/j.rio.2023.100352.        Google Scholar

34. Goyal, A. K., H. S. Dutta, and S. Pal, "Performance optimization of photonic crystal resonator based sensor," Optical and Quantum Electronics, Vol. 48, 431, 2016.
doi:10.1007/s11082-016-0701-0        Google Scholar

35. Dash, D. and J. Saini, "Sensitivity analysis of non-graded and graded index one dimensional cavity-based cholesterol sensor," Optical and Quantum Electronics, Vol. 55, 349, 2023, https://doi.org/10.1007/s11082-023-04587-1.
doi:10.1007/s11082-023-04587-1        Google Scholar

36. Panda, A., P. D. Pukhrambam, F. Wu, and W. Belhadj, "Graphene-based 1D defective photonic crystal biosensor for real-time detection of cancer cells," European Physical Journal Plus, Vol. 136, 2021, https://doi.org/10.1140/epjp/s13360-021-01796-z.
doi:10.1140/epjp/s13360-021-01796-z        Google Scholar

37. Aly, A. H., S. K. Awasthi, D. Mohamed, et al. "Study on a one-dimensional defective photonic crystal suitable for organic compound sensing applications," RSC Advances, Vol. 11, 32973-32980, 2021, https://doi.org/10.1039/d1ra06513k.
doi:10.1039/D1RA06513K        Google Scholar

38. Panda, A. and P. D. Pukhrambam, "Study of metal-porous GaN-based 1D photonic crystal tamm plasmon sensor for detection of fat concentrations in milk," Micro and Nanoelectronics Devices, Circuits and Systems, Vol. 904, 415-425, 2023, https://doi.org/10.1007/978-981-19-2308-1_42.
doi:10.1007/978-981-19-2308-1_42        Google Scholar

39. Panda, A. and P. D. Pukhrambam, "Investigation of defect based 1D photonic crystal structure for real-time detection of waterborne bacteria," Physica B: Condensed Matter, Vol. 607, 2021, https://doi.org/10.1016/j.physb.2021.412854.        Google Scholar