Vol. 134
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-07-15
The Finite Element Method for the Spatially-Variant Lattice Algorithm for Volumes and Doubly-Curved Surfaces
By
Progress In Electromagnetics Research M, Vol. 134, 47-57, 2025
Abstract
A 2D flat, 2D curved, and 3D finite element method (FEM) implementation of the spatially-variant lattice (SVL) algorithm is presented. This powerful algorithm is used in electromagnetics to preserve the electromagnetic properties and geometry of periodic structures that are bent, twisted, conformed, or otherwise spatially varied. Applications of the SVL algorithm include photonic crystals, metamaterials, conformal frequency selective surfaces, cloaking devices, and volumetric circuits over complex geometries. The present work shows examples of SVLs over a planar surface lattice, a doubly-curved surface lattice, and a volumetric lattice.
Citation
Edgar Bustamante, and Raymond C. Rumpf, "The Finite Element Method for the Spatially-Variant Lattice Algorithm for Volumes and Doubly-Curved Surfaces," Progress In Electromagnetics Research M, Vol. 134, 47-57, 2025.
doi:10.2528/PIERM25021203
References

1. Jin, Jian-Ming, The Finite Element Method in Electromagnetics, 3rd Ed., John Wiley & Sons, Hoboken, New Jersey, 2015.

2. Hrennikoff, A., "Solution of problems of elasticity by the framework method," J. Appl. Mech., Vol. 8, No. 4, A169-A175, 1941.

3. Anderson, Dale, John C. Tannehill, Richard H. Pletcher, Ramakanth Munipalli, and Vijaya Shankar, Computational Fluid Mechanics and Heat Transfer, 4th Ed., 974, CRC Press, Boca Raton, 2020.
doi:10.1201/9781351124027

4. Rahman, Talal and Jan Valdman, "Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements," Applied Mathematics and Computation, Vol. 219, No. 13, 7151-7158, 2013.

5. Anjam, Immanuel and Jan Valdman, "Fast MATLAB assembly of FEM matrices in 2D and 3D: Edge elements," Applied Mathematics and Computation, Vol. 267, 252-263, 2015.

6. Özgün, Özlem and Mustafa Kuzuoğlu, MATLAB-based Finite Element Programming in Electromagnetic Modeling, 427, CRC Press, Boca Raton, 2018.
doi:10.1201/9780429457395

7. Munk, Ben A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2005.

8. Joannopoulos, J., S. Johnson, J. Winn, and R. Meade, "Photonic crystals molding the flow of light second edition introduction," Photonic Crystals: Molding the Flow of Light, 1-5, Princeton University Press, 2008.

9. Ichikawa, Hiroyuki, "Electromagnetic analysis of diffraction gratings by the finite-difference time-domain method," Journal of the Optical Society of America A, Vol. 15, No. 1, 152-157, 1998.

10. Schurig, David, Jack J. Mock, B. J. Justice, Steven A. Cummer, John B. Pendry, Anthony F. Starr, and David R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

11. Rumpf, Raymond C. and Javier Pazos, "Synthesis of spatially variant lattices," Optics Express, Vol. 20, No. 14, 15263-15274, 2012.

12. Rumpf, Raymond C., Javier Pazos, Cesar R. Garcia, Luis Ochoa, and Ryan Wicker, "3D printed lattices with spatially variant self-collimation," Progress In Electromagnetics Research, Vol. 139, 1-14, 2013.

13. Digaum, Jennefir L., Javier J. Pazos, Jeffrey Chiles, Jeffrey D'Archangel, Gabriel Padilla, Adrian Tatulian, Raymond C. Rumpf, Sasan Fathpour, Glenn D. Boreman, and Stephen M. Kuebler, "Tight control of light beams in photonic crystals with spatially-variant lattice orientation," Optics Express, Vol. 22, No. 21, 25788-25804, 2014.

14. Rumpf, Raymond C., Cesar R. Garcia, Harvey H. Tsang, Julio E. Padilla, and Michael D. Irwin, "Electromagnetic isolation of a microstrip by embedding in a spatially variant anisotropic metamaterial," Progress In Electromagnetics Research, Vol. 142, 243-260, 2013.

15. Pazos, J. J., "Digitally manufactured spatially variant photonic crystals," The University of Texas at El Paso, TX, USA, 2014.

16. Berry, Eric A. and Raymond C. Rumpf, "Generating spatially-variant metamaterial lattices designed from spatial transforms," Progress In Electromagnetics Research M, Vol. 92, 103-113, 2020.

17. Gutierrez, Jesus J., Noel P. Martinez, and Raymond C. Rumpf, "Independent control of phase and power in spatially variant self-collimating photonic crystals," Journal of the Optical Society of America A, Vol. 36, No. 9, 1534-1539, 2019.

18. Gutierrez, Jesus Javier, "Independent and simultaneous control of electromagnetic wave properties in self-collimating photonic crystals using spatial variance," The University of Texas at El Paso, TX, USA, 2020.

19. Valle, Cesar L., Gilbert T. Carranza, and Raymond C. Rumpf, "Conformal frequency selective surfaces for arbitrary curvature," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 1, 612-620, 2022.

20. Gulib, Asad U. H., Jeremie Dumas, Cesar L. Valle, Edgar Bustamante, Daniele Panozzo, and Raymond C. Rumpf, "Generation of spatially-variant anisotropic metamaterials in 3D volumetric circuits," Progress In Electromagnetics Research C, Vol. 134, 93-102, 2023.
doi:10.2528/PIERC22033005

21. Martinez, Manuel F., Jesus J. Gutierrez, Jimmy E. Touma, and Raymond C. Rumpf, "Formulation of iterative finite-difference method for generating large spatially variant lattices," Applied Computational Electromagnetics Society Journal (ACES), Vol. 37, No. 2, 141-148, 2022.

22. Begam, Nurnihar, Snehasish Saha, Sushanta Sarkar, Debasree C. Sarkar, and Parthapratim Sarkar, "Design of compact patch type curved frequency selective surface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 9, e21803, 2019.

23. Begam, Nurnihar, Poulami Samaddar, Snehasish Saha, Sushanta Sarkar, Debasree Chanda, and Partha P. Sarkar, "Design of curved frequency selective surface with high roll off," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2660-2664, 2017.

24. Ehrenberg, Isaac M., Sanjay E. Sarma, and Bae-Ian Wu, "Fully conformal FSS via rapid 3D prototyping," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, Chicago, IL, USA, Jul. 2012.

25. Calhoun, Donna A., Christiane Helzel, and Randall J. LeVeque, "Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains," SIAM Review, Vol. 50, No. 4, 723-752, 2008.
doi:10.1137/060664094

26. Chen, Hao and Jonathan Bishop, "Delaunay triangulation for curved surfaces," Meshing Roundtable, 115-127, 1997.

27. LeVeque, Randall J., "Finite difference methods for differential equations," Draft Version for Use in AMath, Vol. 585, No. 6, 112, 1998.

28. Shashkov, Mikhail, Conservative Finite-Difference Methods on General Grids, CRC Press, 2018.
doi:10.1201/9781315140209

29. Crandall, S. H., Engineering Analysis: A Survey of Numerical Procedures, 417, McGraw-Hill, 1956.

30. Finlayson, Bruce A. and Laurence Edward Scriven, "The method of weighted residuals --- A review," Appl. Mech. Rev., Vol. 19, No. 9, 735-748, 1966.

31. Galerkin, Boris Grigoryevich, "Series solution of some problems of elastic equilibrium of rods and plates," Vestnik Inzhenerov I Tekhnikov, Vol. 19, No. 7, 897-908, 1915.

32. Dunavant, D. A., "High degree efficient symmetrical Gaussian quadrature rules for the triangle," International Journal for Numerical Methods in Engineering, Vol. 21, No. 6, 1129-1148, 1985.

33. Keast, Patrick, "Moderate-degree tetrahedral quadrature formulas," Computer Methods in Applied Mechanics and Engineering, Vol. 55, No. 3, 339-348, 1986.

34. Zhang, Linbo, Tao Cui, and Hui Liu, "A set of symmetric quadrature rules on triangles and tetrahedra," Journal of Computational Mathematics, Vol. 27, No. 1, 89-96, 2009.

35. Barrett, Richard, Michael Berry, Tony F. Chan, James Demmel, June Donato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994.
doi:10.1137/1.9781611971538

36. Saad, Yousef, Iterative Methods for Sparse Linear Systems, 2nd Ed., SIAM, 2003.
doi:10.1137/1.9780898718003

37. Manteuffel, T. A., "An incomplete factorization technique for positive definite linear systems," Mathematics of Computation, Vol. 34, No. 150, 473-497, 1980.
doi:10.1090/S0025-5718-1980-0559197-0

38. Avila, Jose, Cesar L. Valle, Edgar Bustamante, and Raymond C. Rumpf, "Optimization and characterization of negative uniaxial metamaterials," Progress In Electromagnetics Research C, Vol. 74, 111-121, 2017.

39. Gulib, Asad U. H., Jeremie Dumas, Cesar L. Valle, Edgar Bustamante, Daniele Panozzo, and Raymond C. Rumpf, "Generation of spatially-variant anisotropic metamaterials in 3D volumetric circuits," Progress In Electromagnetics Research C, Vol. 134, 93-102, 2023.
doi:10.2528/PIERC22033005

40. Rumpf, Raymond C., Javier J. Pazos, Jennefir L. Digaum, and Stephen M. Kuebler, "Spatially variant periodic structures in electromagnetics," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, No. 2049, 20140359, 2015.