Vol. 136
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-11-11
Parameter Enhancement of Vivaldi Slot 1×2 Array MIMO Antenna Using AMC
By
Progress In Electromagnetics Research M, Vol. 136, 22-32, 2025
Abstract
A wide band, high gain 1 × 2 array Vivaldi shaped slot Substrate Integrated Waveguide (SIW) Multiple Input Multiple Output (MIMO) antenna with square shaped periodic Artificial Magnetic Conductor (AMC) placed beneath the antenna for applications in X band is presented. A two-port MIMO antenna backed by AMC patches is designed and realized for enhanced gain and bandwidth. The single antenna 1 × 2 array has electrical dimensions of 1.57λr × 1.13λr × 0.027λr. The designed antenna structure has bandwidth of 1.39 GHz (8.79 GHz-10.18 GHz) with a percentage bandwidth of 14.65% and Gain of 11.67 dBi. The edge to edge distance between the MIMO antenna elements is 5 mm (λr/4). The periodic AMC patches improve vital MIMO antenna performance metrics like Isolation, Envelope Correlation Coefficient (ECC), Diversity Gain (DG), Channel Capacity Loss (CCL) and radiation pattern. The unit cell analysis of periodic square AMC patch and a polynomial regression model to find the best goodness of fit for Gain-Bandwidth product versus square AMC patch size is studied. Antenna gain variation seen over the complete bandwidth is < 1 dBi which makes it a flat gain response antenna. The proposed high-gain, wide-band 1 × 2 Vivaldi-slot SIW MIMO antenna with AMC is suitable for X-band radar, point-to-point high-throughput wireless links, and compact platform communication systems requiring robust diversity performance.
Citation
Ameet Mukund Mehta, Shankar B. Deosarkar, Anil Bapusa Nandgaonkar, and Avinash R. Vaidya, "Parameter Enhancement of Vivaldi Slot 1×2 Array MIMO Antenna Using AMC," Progress In Electromagnetics Research M, Vol. 136, 22-32, 2025.
doi:10.2528/PIERM25031101
References

1. Verbiest, J. R. and G. A. E. Vandenbosch, "Low-cost small-size tapered slot antenna for lower band UWB applications," Electronics Letters, Vol. 42, No. 12, 670-671, 2006.
doi:10.1049/el:20061333

2. Yoshimura, Y., "A microstripline slot antenna (short papers)," IEEE Transactions on Microwave Theory and Techniques, Vol. 20, No. 11, 760-762, Nov. 1972.
doi:10.1109/tmtt.1972.1127868

3. Locker, C., T. Vaupel, and T. F. Eibert, "Radiation efficient unidirectional low-profile slot antenna elements for X-band application," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 8, 2765-2768, Aug. 2005.
doi:10.1109/tap.2005.851793

4. Xiong, Jiang, Xuelian Li, and Bing-Zhong Wang, "A novel low-profile slot antenna with unidirectional radiation," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 1443-1445, The Hague, Netherlands, 2014.
doi:10.1109/EuCAP.2014.6902052

5. Gao, Xueyi, Yihong Qi, and Yong-Chang Jiao, "Design of multiplate back-reflector for a wideband slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 773-776, 2013.
doi:10.1109/lawp.2013.2270945

6. Mukherjee, Soumava, Animesh Biswas, and Kumar Vaibhav Srivastava, "Broadband substrate integrated waveguide cavity-backed bow-tie slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1152-1155, 2014.
doi:10.1109/lawp.2014.2330743

7. Mukherjee, Soumava, Animesh Biswas, and Kumar Vaibhav Srivastava, "Substrate integrated waveguide cavity-backed dumbbell-shaped slot antenna for dual-frequency applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1314-1317, 2015.
doi:10.1109/lawp.2014.2384018

8. Addepalli, Tathababu and V. R. Anitha, "A very compact and closely spaced circular shaped UWB MIMO antenna with improved isolation," AEU --- International Journal of Electronics and Communications, Vol. 114, 153016, 2020.
doi:10.1016/j.aeue.2019.153016

9. Sheikh, Javaid A., Zamir Ahmad, Shabir A. Paraha, and G. Mohiuddin Bhat, "A compact dual band MIMO antenna for WLAN applications," 2016 IEEE Annual India Conference (INDICON), 1-4, Bangalore, India, 2016.
doi:10.1109/INDICON.2016.7838994

10. Es-Saleh, Anouar, Mohammed Bendaoued, Soufian Lakrit, Sudipta Das, and Ahmed Faize, "Design aspects of MIMO antennas and its applications: A comprehensive review," Results in Engineering, Vol. 25, 103797, 2025.
doi:10.1016/j.rineng.2024.103797

11. Fang, Shi, Li Zhang, Yunjie Guan, Zibin Weng, and Xinyun Wen, "A wideband Fabry-Perot cavity antenna with single-layer partially reflective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 2, 412-416, Feb. 2023.
doi:10.1109/lawp.2022.3214230

12. Mehta, Ameet Mukund, Shankar B. Deosarkar, and Anil Bapusa Nandgaonkar, "Design and development of CPW-fed miniaturized MSA for improved gain, bandwidth and efficiency using PRS," Progress In Electromagnetics Research C, Vol. 137, 211-222, 2023.
doi:10.2528/pierc23071403

13. Jagtap, Shishir, Anjali Chaudhari, Nayana Chaskar, Shilpa Kharche, and Rajiv K. Gupta, "A wideband microstrip array design using RIS and PRS layers," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 509-512, Mar. 2018.
doi:10.1109/lawp.2018.2799873

14. Zhou, Enyu, Yongzhi Cheng, Fu Chen, Hui Luo, and Xiangcheng Li, "Low-profile high-gain wideband multi-resonance microstrip-fed slot antenna with anisotropic metasurface," Progress In Electromagnetics Research, Vol. 175, 91-104, 2022.
doi:10.2528/pier22062201

15. Pramodini, Buela, Divya Chaturvedi, Lakshmi Darasi, Goutam Rana, and Arvind Kumar, "Optimized compact MIMO antenna design: HMSIW-based and cavity-backed for enhanced bandwidth," IEEE Access, Vol. 12, 189820-189828, 2024.
doi:10.1109/access.2024.3515101

16. Chaturvedi, Divya and Arvind Kumar, "A QMSIW cavity-backed self-diplexing antenna with tunable resonant frequency using CSRR slot," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 1, 259-263, Jan. 2024.
doi:10.1109/lawp.2023.3323008

17. Xu, Feng and Ke Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 66-73, Jan. 2005.
doi:10.1109/tmtt.2004.839303

18. Zhu, Jianfeng, Shufang Li, Shaowei Liao, and Quan Xue, "Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 458-462, Mar. 2018.
doi:10.1109/lawp.2018.2795018

19. Sasikumar, Janani and Venkat Koushick, "Performance analysis of complementary split ring resonator with improved four element antenna for X band wireless applications," Progress In Electromagnetics Research M, Vol. 130, 95-102, 2024.
doi:10.2528/pierm24102401

20. Li, Rong, Haoyu Zhang, Yanhong Xu, and Jianqiang Hou, "A compact two-port Vivaldi-based MIMO antenna with high isolation for C and X bands applications," Progress In Electromagnetics Research Letters, Vol. 120, 95-101, 2024.
doi:10.2528/pierl24040501

21. Sarkar, Goffar Ali, Khan Masood Parvez, Arunachalam Ambika, Tanvir Islam, Sudipta Das, Utpal Mandal, and Susanta Kumar Parui, "A quad port MIMO antenna using rectangular dielectric resonator antenna array for intelligent transportation system applications," Progress In Electromagnetics Research M, Vol. 123, 45-52, 2024.
doi:10.2528/pierm23121304

22. Khan, Ijaz, Kuang Zhang, Luqman Ali, and Qun Wu, "A compact FSS-based four-port MIMO antenna for low mutual coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 12, 2836-2840, Dec. 2023.
doi:10.1109/lawp.2023.3300837

23. Saleh, Sahar, Tale Saeidi, Nick Timmons, Bader Alali, Faroq Razzaz, and Ayman A. Althuwayb, "Compact ultra-wide band two element vivaldi non-uniform slot MIMO antenna for body-centric applications," Results in Engineering, Vol. 24, 102839, 2024.
doi:10.1016/j.rineng.2024.102839