Vol. 134
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-07-11
Low-Pass and Bandpass Dual-Band Filter Based on Surface Mounted Technology Using Lumped Parameter Components
By
Progress In Electromagnetics Research M, Vol. 134, 41-45, 2025
Abstract
This paper proposes a lumped parameter microwave dual frequency filter implemented using surface mount technology (SMT), which has low-pass and band-pass characteristics. We implement a dual-band response by integrating a matching network and harnessing the inherent parasitic inductance of SMT capacitors. This strategy generates transmission zeros (TZs) in the high-frequency band, significantly enhancing frequency selectivity. The performance of the filter was verified through odd-even mode analysis and validated through experimental measurement. The experiment measured that the low pass cut-off frequency of the filter is 360 MHz, and the second channel exhibits good band-pass characteristics at 800 MHz, with an insertion loss of -2.191 dB.
Citation
Jie Xu, Yongle Wu, Qinghua Yang, and Weimin Wang, "Low-Pass and Bandpass Dual-Band Filter Based on Surface Mounted Technology Using Lumped Parameter Components," Progress In Electromagnetics Research M, Vol. 134, 41-45, 2025.
doi:10.2528/PIERM25050902
References

1. Xu, Jin, Wen Wu, and Gao Wei, "Compact multi-band bandpass filters with mixed electric and magnetic coupling using multiple-mode resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 3909-3919, 2015.

2. Liu, Longchuan, Qianyin Xiang, Mingye Fu, Dinghong Jia, Xiaoguo Huang, and Quanyuan Feng, "A novel tunable LC bandpass filter with constant bandwidth based on mixed coupling," 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Harbin, China, 2022.

3. Gopalakrishnan, Soundarya and Nagarajan Gunavathi, "Compact dual-band SIW bandpass filter using CSRR and DGS structure resonators," Progress In Electromagnetics Research Letters, Vol. 101, 79-87, 2021.

4. Wei, Guang Yong, Yun Xiu Wang, Jie Liu, and Hai Ping Li, "Design of a planar compact dual-band bandpass filter with multiple transmission zeros using a stub-loaded structure," Progress In Electromagnetics Research Letters, Vol. 109, 23-30, 2023.
doi:10.2528/PIERL22122603

5. Arif, Kamran, Kanaparthi V. Phani Kumar, Rusan Kumar Barik, and Geetha Chakaravarthi, "A planar quad-band bandpass filter employing transmission lines loaded with tri-stepped impedance open-and dual-stepped impedance short-ended resonators," Progress In Electromagnetics Research C, Vol. 147, 65-72, 2024.
doi:10.2528/PIERC24042504

6. Chang, Haojie, Weixing Sheng, Jie Cui, and Jie Lu, "Multilayer dual-band bandpass filter with multiple transmission zeros using discriminating coupling," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 7, 645-648, 2020.

7. Sun, Xinying, Chuicai Rong, Huajie Gao, and Menglu Zhang, "A miniaturization dual-passband microwave filter based on load-coupled open stub lines," Progress In Electromagnetics Research Letters, Vol. 124, 17-21, 2025.
doi:10.2528/PIERL24103001

8. Khattab, Moulay Said, Tarik Touiss, Ilyass El Kadmiri, Fatima Zahra Elamri, and Driss Bria, "Multi-channel electromagnetic filters based on EIT and Fano resonances through parallel segments and asymmetric resonators," Progress In Electromagnetics Research Letters, Vol. 115, 105-109, 2024.
doi:10.2528/PIERL23101004

9. Long, Xu-Yun, Wei Shen, Min-Quan Li, Yuan Zhu, Ya-Dong Wei, and Yang Hou, "A novel quad-band filter with high skirt selectivity using nested folded SIRs," 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 1, 302-305, Beijing, China, 2016.

10. Sun, Mingli, Zhijiao Chen, Tao Zuo, Zhaoyu Zuo, and Anxue Zhang, "A high selectivity dual‐band bandpass filter using quadruple‐mode multi‐stub loaded ring resonator (SLRR)," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 7, e22667, 2021.

11. Li, Chen, Minquan Li, Zhonghui Li, Shuangqing Cao, and Rongxian Bai, "Dual-band filters with adjustable bandwidth and wide stopband using CRLH transmission line theory," Progress In Electromagnetics Research C, Vol. 152, 73-80, 2025.
doi:10.2528/PIERC24120901

12. Shankar, Earla, Kanaparthi V. Phani Kumar, and Vamsi Krishna Velidi, "Design of high selectivity compact dual-band bandpass filter with seven transmission-zeros for GPS and WiMAX applications," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 70, No. 7, 2395-2399, 2023.

13. Hao, Liwei, Yongle Wu, Weimin Wang, and Yuhao Yang, "Design of on-chip dual-band bandpass filter using lumped elements in LTCC technology," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 3, 959-963, 2022.

14. Liu, Yuxin, Yongle Wu, Shuchen Zhen, Yuhao Yang, Weimin Wang, and Qinghua Yang, "The co-design of IPD high-selectivity diplexer and dual-band filter chips based on lumped element single-band filter," AEU --- International Journal of Electronics and Communications, Vol. 183, 155369, 2024.

15. Kurniadi, Deni Permana, Dadin Mahmudin, Prasetyo Putranto, Eko Joni Pristianto, Sri Hardiati, Winy Desvasari, Arief Nur Rahman, Pamungkas Daud, Arie Setiawan, and Fajri Darwis, "Design and realization of 10 MHz low pass filter using SMT to reduce transient voltage on the DLVA output," 2019 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 11-15, Tangerang, Indonesia, 2019.

16. Terra, Nathália Mattos, Sandro Breval Santiago, Adalena Kennedy Vieira, and Raimundo Kennedy Vieira, "Advancing surface mount technology quality: A computer-assisted approach for enhanced X-ray inspection of solder joints," The International Journal of Advanced Manufacturing Technology, Vol. 131, 5897-5904, 2024.
doi:10.1007/s00170-024-13343-y

17. Choi, Jaehyun, Junho Park, Woonbong Hwang, and Wonbin Hong, "Millimeter-wave 5G antenna-in-package for mobile devices featuring intelligent frequency correction using distributed surface mount technologies," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, Dusseldorf, Germany, 2021.

18. Shao, Chuan, Rong Cai, Xinnai Zhang, and Kai Xu, "Novel compact wideband bandpass filters with high upper stopband rejection featuring a quadruple-mode resonator," Progress In Electromagnetics Research Letters, Vol. 125, 37-41, 2025.
doi:10.2528/PIERL25010402

19. Song, Huan, Yongle Wu, Keyan Li, Weimin Wang, and Qinghua Yang, "IPD-based miniaturized bandpass filter chip with independently controllable transmission zeros using lumped elements," 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), 1-3, Xi'an, China, 2024.

20. Zhu, Lei, Sheng Sun, and Rui Li, Microwave Bandpass Filters for Wideband Communications, John Wiley & Sons, Hoboken, New Jersey, 2011.

21. Wu, Y., W. Wang, et al., Fundamental Theory of Generalized N-port Microwave Circuits and RF Chips Complex-impedance Networks, Publishing House of Electronics Industry, Jan. 2025 (in Chinese).