Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-26
RCS Reduction Technology for Circularly Polarized Satellite Navigation Antenna Based on Phase Gradient Surface
By
Progress In Electromagnetics Research C, Vol. 164, 27-34, 2026
Abstract
With the advancement of radar detection technology, stealth technology has become increasingly critical in modern warfare. Antennas, as essential components of airborne platforms, are significant scattering sources on stealth aircraft. This paper proposes a method to reduce the Radar Cross Section (RCS) of B3-band satellite navigation antennas using a broadband phase gradient surface. The phase gradient surface is designed to deflect scattered energy into non-threatening angular domains, thereby achieving RCS reduction. The proposed design is validated through simulation software, demonstrating its effectiveness in reducing RCS while maintaining the radiation performance of the antenna. The results show that the phase gradient surface can achieve more than 4 dB and 6 dB of RCS reduction under phi- and theta-polarized plane wave incidence, respectively, in the frequency range of 5.5 GHz to 15 GHz.
Citation
Lei Gan, Kun Wei, Jing-Xian Chen, and Qing-Chao Guo, "RCS Reduction Technology for Circularly Polarized Satellite Navigation Antenna Based on Phase Gradient Surface," Progress In Electromagnetics Research C, Vol. 164, 27-34, 2026.
doi:10.2528/PIERC25052304
References

1. Yu, Nanfang, Patrice Genevet, Mikhail A. Kats, Francesco Aieta, Jean-Philippe Tetienne, Federico Capasso, and Zeno Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713        Google Scholar

2. Wu, Chenjun, Yongzhi Cheng, Wenying Wang, Bo He, and Rongzhou Gong, "Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling," Applied Physics Express, Vol. 8, No. 12, 122001, 2015.
doi:10.7567/apex.8.122001        Google Scholar

3. Zheng, Qiqi, Yongfeng Li, Jieqiu Zhang, Hua Ma, Jiafu Wang, Yongqiang Pang, Yajuan Han, Sai Sui, Yang Shen, Hongya Chen, and Shaobo Qu, "Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase," Scientific Reports, Vol. 7, No. 1, 43543, 2017.
doi:10.1038/srep43543        Google Scholar

4. Li, Yongfeng, Jieqiu Zhang, Shaobo Qu, Jiafu Wang, Hongya Chen, Lin Zheng, Zhuo Xu, and Anxue Zhang, "Achieving wideband polarization-independent anomalous reflection for linearly polarized waves with dispersionless phase gradient metasurfaces," Journal of Physics D: Applied Physics, Vol. 47, No. 42, 425103, 2014.
doi:10.1088/0022-3727/47/42/425103        Google Scholar

5. Feng, Maochang, Yongfeng Li, Qiqi Zheng, Jieqiu Zhang, Yajuan Han, Jiafu Wang, Hongya Chen, Sui Sai, Hua Ma, and Shaobo Qu, "Two-dimensional coding phase gradient metasurface for RCS reduction," Journal of Physics D: Applied Physics, Vol. 51, No. 37, 375103, 2018.
doi:10.1088/1361-6463/aad5ad        Google Scholar

6. Liang, Lanju, Minggui Wei, Xin Yan, Dequan Wei, Dachuan Liang, Jiaguang Han, Xin Ding, Gaoya Zhang, and Jianquan Yao, "Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies," Scientific Reports, Vol. 6, No. 1, 39252, 2016.
doi:10.1038/srep39252        Google Scholar

7. Zhang, Yin, Lanju Liang, Jing Yang, Yijun Feng, Bo Zhu, Junming Zhao, Tian Jiang, Biaobing Jin, and Weiwei Liu, "Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution," Scientific Reports, Vol. 6, No. 1, 26875, 2016.
doi:10.1038/srep26875        Google Scholar

8. Wang, Ke, Jie Zhao, Qiang Cheng, Di Sha Dong, and Tie Jun Cui, "Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm," Scientific Reports, Vol. 4, No. 1, 5935, 2014.
doi:10.1038/srep05935        Google Scholar

9. Zhuang, Yaqiang, Guangming Wang, Jiangang Liang, Tong Cai, Xiao-Lan Tang, Tongfeng Guo, and Qingfeng Zhang, "Random combinatorial gradient metasurface for broadband, wide-angle and polarization-independent diffusion scattering," Scientific Reports, Vol. 7, No. 1, 16560, 2017.
doi:10.1038/s41598-017-16910-4        Google Scholar

10. Li, Zhaoyi, Myoung-Hwan Kim, Cheng Wang, Zhaohong Han, Sajan Shrestha, Adam Christopher Overvig, Ming Lu, Aaron Stein, Anuradha Murthy Agarwal, Marko Lončar, and Nanfang Yu, "Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces," Nature Nanotechnology, Vol. 12, 675-683, 2017.
doi:10.1038/nnano.2017.50        Google Scholar

11. Shen, Yang, Zhibin Pei, Yongqiang Pang, Jiafu Wang, Anxue Zhang, and Shaobo Qu, "Phase random metasurfaces for broadband wide-angle radar cross section reduction," Microwave and Optical Technology Letters, Vol. 57, No. 12, 2813-2819, 2015.
doi:10.1002/mop.29444        Google Scholar

12. Cheng, Yongzhi, Chenjun Wu, Chenchen Ge, Jiaji Yang, Xiaojun Pei, Fan Jia, and Rongzhou Gong, "An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction," Applied Physics B, Vol. 123, No. 5, 143, 2017.
doi:10.1007/s00340-017-6728-5        Google Scholar

13. Wang, Yi, Kang Chen, You Li, and Qunsheng Cao, "Design of nonresonant metasurfaces for broadband RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 346-350, 2021.
doi:10.1109/lawp.2021.3049882        Google Scholar

14. Zhang, Wenbo, Ying Liu, and Shuxi Gong, "Wideband RCS reduction using two dimensional phase gradient metasurface," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, Xi'an, China, 2017.
doi:10.1109/APCAP.2017.8420342

15. Jia, Yongtao, Ying Liu, Wenbo Zhang, Jun Wang, Shuxi Gong, and Guisheng Liao, "High-gain Fabry-Perot antennas with wideband low monostatic RCS using phase gradient metasurface," IEEE Access, Vol. 7, 4816-4824, 2019.
doi:10.1109/access.2018.2886832        Google Scholar

16. Umair, Hassan, Tarik Bin Abdul Latef, Yoshihide Yamada, Tayyab Hassan, Wan Nor Liza Binti Wan Mahadi, Mohamadariff Othman, Kamilia Kamardin, and Mousa I. Hussein, "Fabry-Perot antenna employing artificial magnetic conductors and phase gradient metasurface for wideband monostatic RCS reduction and high gain tilted beam radiation," IEEE Access, Vol. 9, 66607-66625, 2021.
doi:10.1109/access.2021.3076913        Google Scholar

17. Yu, Jun, Wen Jiang, and Shuxi Gong, "Low-RCS beam-steering antenna based on reconfigurable phase gradient metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2016-2020, 2019.
doi:10.1109/lawp.2019.2936300        Google Scholar