Vol. 135
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-10-06
Dynamic Resources Management for Integrated Optimized Entanglement in Quantum Repeater Networks
By
Progress In Electromagnetics Research M, Vol. 135, 80-90, 2025
Abstract
Quantum repeaters are essential for long-distance quantum communication, surmounting challenges like signal attenuation and decoherence. Nonetheless, current quantum repeater networks are constrained by static cutoff times for low-fidelity connections, suboptimal resource allocation, and the absence of quantum-classical integration. This paper introduces a hybrid quantum-classical method to tackle these issues by employing dynamic cutoff times contingent upon real-time fidelity decay and decoherence rates. Markov Decision Process (MDP) is used to characterize the system with the aim to optimize the entanglement generation processes, waiting and swapping. In this study, the objective is to reduce the time which is needed to realize end-to-end entanglement while fulfilling the requirements of classical channel capacity. To manage constraints such as classical user demands, quantum memory limits, and network congestion, Lagrangian optimization has been applied. The combined approach improves the use of both classical resources and quantum, providing a simplified solution that is adaptable to different users needs and different network conditions. The effectiveness of the model is tested via simulations processes, along with the mathematical process. This demonstrated important gains in fidelity preservation, resource efficiency, and latency minimization compared to the state-of-the-art traditional methods. This study makes a valuable contribution tackling the development of quantum networks, providing a rigid establishment to build a quantum capable for internet to support the security in distributed quantum computing and global communications.
Citation
Omar Ali Mohammad, and Jawad A. K. Hasan, "Dynamic Resources Management for Integrated Optimized Entanglement in Quantum Repeater Networks," Progress In Electromagnetics Research M, Vol. 135, 80-90, 2025.
doi:10.2528/PIERM25062304
References

1. Munro, William J., Koji Azuma, Kiyoshi Tamaki, and Kae Nemoto, "Inside quantum repeaters," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 21, No. 3, 78-90, 2015.
doi:10.1109/jstqe.2015.2392076

2. Briegel, H.-J., W. Dür, J. I. Cirac, and P. Zoller, "Quantum repeaters: The role of imperfect local operations in quantum communication," Physical Review Letters, Vol. 81, No. 26, 5932, 1998.
doi:10.1103/physrevlett.81.5932

3. Cao, Yuan, Yongli Zhao, Qin Wang, Jie Zhang, Soon Xin Ng, and Lajos Hanzo, "The evolution of quantum key distribution networks: On the road to the internet," IEEE Communications Surveys & Tutorials, Vol. 24, No. 2, 839-894, 2022.
doi:10.1109/comst.2022.3144219

4. Sidhu, Jasminder S., Thomas Brougham, Duncan McArthur, Roberto G. Pousa, and Daniel K. L. Oi, "Finite key performance of satellite quantum key distribution under practical constraints," Communications Physics, Vol. 6, No. 1, 210, Aug. 2023.
doi:10.1038/s42005-023-01299-6

5. Sidhu, Jasminder S., Siddarth K. Joshi, Mustafa Gündoğan, Thomas Brougham, David Lowndes, Luca Mazzarella, Markus Krutzik, Sonali Mohapatra, Daniele Dequal, Giuseppe Vallone, et al., "Advances in space quantum communications," IET Quantum Communication, Vol. 2, No. 4, 182-217, 2021.
doi:10.1049/qtc2.12015

6. Bhuyan, Amit Kumar and Hrishikesh Dutta, "Harnessing quantum entanglement: Comprehensive strategies for enhanced communication and beyond in quantum networks," arxiv preprint arxiv:2406.08833, 2024.

7. Abane, Amar, Michael Cubeddu, Van Sy Mai, and Abdella Battou, "Entanglement routing in quantum networks: A comprehensive survey," IEEE Transactions on Quantum Engineering, Vol. 6, 1-39, 2025.
doi:10.1109/tqe.2025.3541123

8. Vista, F., "Quantum-aided modeling and design techniques for advanced wireless network architectures," Science China Physics, Mechanics & Astronomy, Vol. 66, No. 5, 250301, 2024.

9. Al-Abbasi, Ziad Qais, Laith Farhan, and Raad S. Alhumaima, "Multiple-intelligent reflective surfaces (Multi-IRSs)-based NOMA system," Electronics, Vol. 11, No. 23, 4045, 2022.
doi:10.3390/electronics11234045

10. Khalif, Basit N. A., Jawad A. K. Hasan, Raad S. Alhumaima, and Hamed S. Al-Raweshidy, "Performance analysis of quantum based cloud radio access networks," IEEE Access, Vol. 8, 18123-18133, 2019.
doi:10.1109/access.2019.2925902

11. Alhumaima, Raad S., "Energy efficiency and latency analysis of fog networks," China Communications, Vol. 17, No. 4, 66-77, 2020.
doi:10.23919/jcc.2020.04.007

12. Iñesta, Álvaro G., Gayane Vardoyan, Lara Scavuzzo, and Stephanie Wehner, "Optimal entanglement distribution policies in homogeneous repeater chains with cutoffs," Npj Quantum Information, Vol. 9, No. 1, 46, May 2023.
doi:10.1038/s41534-023-00713-9

13. Li, Jan, Tim Coopmans, Patrick Emonts, Kenneth Goodenough, Jordi Tura, and Evert van Nieuwenburg, "Optimising entanglement distribution policies under classical communication constraints assisted by reinforcement learning," Machine Learning: Science and Technology, Vol. 6, No. 3, 035024, 2025.
doi:10.1088/2632-2153/adeefa

14. Da Silva, Francisco Ferreira, Ariana Torres-Knoop, Tim Coopmans, David Maier, and Stephanie Wehner, "Optimizing entanglement generation and distribution using genetic algorithms," Quantum Science and Technology, Vol. 6, No. 3, 035007, Jun. 2021.
doi:10.1088/2058-9565/abfc93

15. Talsma, Lars, Álvaro G. Iñesta, and Stephanie Wehner, "Continuously distributing entanglement in quantum networks with regular topologies," Physical Review A, Vol. 110, No. 2, 022429, Aug. 2024.
doi:10.1103/physreva.110.022429

16. Ghaderibaneh, Mohammad, Himanshu Gupta, C. R. Ramakrishnan, and Ertai Luo, "Pre-distribution of entanglements in quantum networks," 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 426-436, Broomfield, CO, USA, Sep. 2022.
doi:10.1109/QCE53715.2022.00064

17. Iñesta, Álvaro G. and Stephanie Wehner, "Performance metrics for the continuous distribution of entanglement in multiuser quantum networks," Physical Review A, Vol. 108, No. 5, 052615, 2023.
doi:10.1103/physreva.108.052615

18. Shchukin, E., F. Schmidt, and P. van Loock, "Waiting time in quantum repeaters with probabilistic entanglement swapping," Physical Review A, Vol. 100, No. 3, 032322, Sep. 2019.
doi:10.1103/physreva.100.032322

19. Goodenough, Kenneth, Tim Coopmans, and Don Towsley, "On noise in swap ASAP repeater chains: Exact analytics, distributions and tight approximations," Quantum, Vol. 9, 1744, May 2025.
doi:10.22331/q-2025-05-15-1744

20. Kolar, Alexander, Allen Zang, Joaquin Chung, Martin Suchara, and Rajkumar Kettimuthu, "Adaptive, continuous entanglement generation for quantum networks," IEEE INFOCOM 2022 --- IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 1-6, New York, NY, USA, May 2022.
doi:10.1109/INFOCOMWKSHPS54753.2022.9798130

21. Iñesta, Álvaro G., Hyeongrak Choi, Dirk Englund, and Stephanie Wehner, "Quantum circuit switching with one-way repeaters in star networks," 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), Vol. 1, 1857-1867, Montreal, QC, Canada, Sep. 2024.
doi:10.1109/qce60285.2024.00215

22. Grant, E., "On the stochastic analysis of a quantum entanglement distribution switch," Science China Physics, Mechanics & Astronomy, Vol. 66, No. 5, 250301, 2023.

23. Zang, Allen, Xinan Chen, Alexander Kolar, Joaquin Chung, Martin Suchara, Tian Zhong, and Rajkumar Kettimuthu, "Entanglement distribution in quantum repeater with purification and optimized buffer time," IEEE INFOCOM 2023 --- IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 1-6, Hoboken, NJ, USA, May 2023.
doi:10.1109/INFOCOMWKSHPS57453.2023.10226122

24. Khatri, Sumeet, "On the design and analysis of near-term quantum network protocols using Markov decision processes," AVS Quantum Science, Vol. 4, No. 3, 030501, 2022.
doi:10.1116/5.0084653

25. Coopmans, Tim, Sebastiaan Brand, and David Elkouss, "Improved analytical bounds on delivery times of long-distance entanglement," Physical Review A, Vol. 105, No. 1, 012608, 2022.
doi:10.1103/physreva.105.012608

26. Haldar, Stav, Pratik J. Barge, Xiang Cheng, Kai-Chi Chang, Brian T. Kirby, Sumeet Khatri, Chee Wei Wong, and Hwang Lee, "Reducing classical communication costs in multiplexed quantum repeaters using hardware-aware quasi-local policies," Communications Physics, Vol. 8, No. 1, 132, Apr. 2025.
doi:10.1038/s42005-025-02029-w

27. Al-Nedawe, Basman M., Raad S. Alhumaima, and Wisam Hasan Ali, "On the quality of service of next generation green networks," IET Networks, Vol. 11, No. 1, 1-12, 2022.
doi:10.1049/ntw2.12030