Vol. 135
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-09-22
Spin Spherical Harmonics for the Analysis of Antenna Electromagnetic Fields
By
Progress In Electromagnetics Research M, Vol. 135, 34-44, 2025
Abstract
Spherical harmonics are classical analysis tools in many science and engineering domains. For analyzing the electromagnetic fields of antennas in the frequency domain, the mostly used formulation is the one proposed by Hansen. This article proposes an alternative solution, relying on spin spherical harmonics. On a sphere, the tangential components of the electric and magnetic fields are represented by means of harmonics of spin ±1. Then new closed-form relations are established between the spin spherical harmonics and the ones formulated by Hansen. A sampling theorem and fast transforms that are consistent with spin spherical harmonics are used. The radiations of spin spherical harmonics of order 1 are related to elementary dipoles and Huygens sources in circular polarization. Finally, numerical experiments are performed with a horn antenna and a GNSS antenna installed on an aircraft. They show that a very large radiating system with a band-limit of 2048 can be efficiently analyzed by means of fast spin spherical harmonic transforms, with a computation time of 2 minutes, approximately.
Citation
Alice Quennelle, Alexandre Chabory, and Romain Contreres, "Spin Spherical Harmonics for the Analysis of Antenna Electromagnetic Fields," Progress In Electromagnetics Research M, Vol. 135, 34-44, 2025.
doi:10.2528/PIERM25063003
References

1. Stratton, Julius Adams, Electromagnetic Theory, John Wiley & Sons, 2007.
doi:10.1002/9781119134640

2. Felsen, Leopold B. and Nathan Marcuvitz, Radiation and Scattering of Waves, John Wiley & Sons, 1994.
doi:10.1109/9780470546307

3. Van Bladel, Jean G., Electromagnetic Fields, John Wiley & Sons, 2007.
doi:10.1002/047012458x

4. Hansen, Jesper E., Spherical Near-field Antenna Measurements, Vol. 26, IET, 1988.
doi:10.1007/978-1-4615-6459-1_33

5. Ramamoorthi, Ravi and Pat Hanrahan, "A signal-processing framework for reflection," ACM Transactions on Graphics (TOG), Vol. 23, No. 4, 1004-1042, 2004.
doi:10.1145/1027411.1027416

6. Choi, Cheol Ho, Joseph Ivanic, Mark S. Gordon, and Klaus Ruedenberg, "Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion," The Journal of Chemical Physics, Vol. 111, No. 19, 8825-8831, 1999.
doi:10.1063/1.480229

7. Ritchie, David W. and Graham J. L. Kemp, "Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces," Journal of Computational Chemistry, Vol. 20, No. 4, 383-395, 1999.
doi:10.1002/(sici)1096-987x(199903)20:4<383::aid-jcc1>3.0.co;2-m

8. Simons, Frederik J., F. A. Dahlen, and Mark A. Wieczorek, "Spatiospectral concentration on a sphere," SIAM Review, Vol. 48, No. 3, 504-536, 2006.
doi:10.1137/s0036144504445765

9. Swenson, Sean and John Wahr, "Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity," Journal of Geophysical Research: Solid Earth, Vol. 107, No. B9, ETG 3-1-ETG 3-13, 2002.
doi:10.1029/2001jb000576

10. Whaler, K. A., "Downward continuation of Magsat lithospheric anomalies to the Earth's surface," Geophysical Journal International, Vol. 116, No. 2, 267-278, 1994.
doi:10.1111/j.1365-246x.1994.tb01797.x

11. Turcotte, D. L., R. J. Willemann, W. F. Haxby, and John Norberry, "Role of membrane stresses in the support of planetary topography," Journal of Geophysical Research: Solid Earth, Vol. 86, No. B5, 3951-3959, 1981.
doi:10.1029/jb086ib05p03951

12. Wieczorek, Mark A. and Roger J. Phillips, "Potential anomalies on a sphere: Applications to the thickness of the lunar crust," Journal of Geophysical Research: Planets, Vol. 103, No. E1, 1715-1724, 1998.
doi:10.1029/97je03136

13. Bennett, C. L., A. J. Banday, K. M. Górski, G. Hinshaw, P. Jackson, P. Keegstra, A. Kogut, G. F. Smoot, D. T. Wilkinson, and E. L. Wright, "Four-year COBE* DMR cosmic microwave background observations: Maps and basic results," The Astrophysical Journal, Vol. 464, No. 1, L1, 1996.
doi:10.1086/310075

14. Jarosik, N., C. L. Bennett, J. Dunkley, B. Gold, M. R. Greason, M. Halpern, R. S. Hill, G. Hinshaw, A. Kogut, E. Komatsu, et al. "Seven-year wilkinson microwave anisotropy probe (WMAP*) observations: Sky maps, systematic errors, and basic results," The Astrophysical Journal Supplement Series, Vol. 192, No. 2, 14, 2011.
doi:10.1088/0067-0049/192/2/14

15. Newman, E. T. and R. Penrose, "Note on the bondi-metzner-sachs group," Journal of Mathematical Physics, Vol. 7, No. 5, 863-870, 1966.
doi:10.1063/1.1931221

16. Matute, E. A., "On the vector solutions of Maxwell equations with the spin-weighted spherical harmonics," ArXiv Preprint Physics/0604096, 2006.
doi:10.48550/arXiv.physics/0604096

17. Torres del Castillo, G. F., "Spin-weighted spherical harmonics and their applications," Revista mexicana de física, Vol. 53, 125-134, 2007.

18. Shannon, C. E., "Communication in the presence of noise," Proceedings of the IRE, Vol. 37, No. 1, 10-21, 1949.
doi:10.1109/jrproc.1949.232969

19. Kowsky, W. S., "A quadrature formula over the sphere with application to high resolution spherical harmonic analysis," Bulletin géodésique, Vol. 60, 1-14, 1986.
doi:10.1007/BF02519350

20. Driscoll, J. R. and D. M. Healy, "Computing Fourier transforms and convolutions on the 2-sphere," Advances in Applied Mathematics, Vol. 15, No. 2, 202-250, 1994.
doi:10.1006/aama.1994.1008

21. McEwen, Jason D. and Yves Wiaux, "A novel sampling theorem on the sphere," IEEE Transactions on Signal Processing, Vol. 59, No. 12, 5876-5887, 2011.
doi:10.1109/tsp.2011.2166394

22. Mézières, Nicolas, Benjamin Fuchs, Laurent Le Coq, Jean-Marie Lerat, Romain Contreres, and Gwenn Le Fur, "On the application of sparse spherical harmonic expansion for fast antenna far-field measurements," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 746-750, 2020.
doi:10.1109/lawp.2020.2978170

23. Price, Matthew A. and Jason D. McEwen, "Differentiable and accelerated spherical harmonic and Wigner transforms," Journal of Computational Physics, Vol. 510, 113109, 2024.
doi:10.1016/j.jcp.2024.113109

24. Mézières, Nicolas, Laurent Le Coq, and Benjamin Fuchs, "Phaseless spherical near-field antenna measurements with reduced samplings," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 9, 7447-7456, 2023.
doi:10.1109/tap.2023.3298149

25. McEwen, Jason D., Boris Leistedt, Martin Büttner, Hiranya V. Peiris, and Yves Wiaux, "Directional spin wavelets on the sphere," ArXiv Preprint ArXiv:1509.06749, 2015.
doi:10.48550/arXiv.1509.06749

26. Morlaas, Christophe, Bernard Souny, and Alexandre Chabory, "Helical-ring antenna for hemispherical radiation in circular polarization," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 4693-4701, 2015.
doi:10.1109/tap.2015.2479640

27. Macabiau, Christophe, Carl Milner, Alexandre Chabory, Norbert Suard, Catalina Rodriguez, Mikaël Mabilleau, Jonathan Vuillaume, and Sixtine Hegron, "Nominal bias analysis for ARAIM user," Proceedings of the 2015 International Technical Meeting of The Institute of Navigation, 713-732, Dana Point, CA, USA, Jan. 2015.

28. Quennelle, A., Alexandre Chabory, R. Contreres, G. LeFur, and P. Pouliguen, "Formulation of the measurement problem and application to antenna measurement correction," 2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), 572-572, Venice, Italy, 2023.
doi:10.1109/iceaa57318.2023.10297713

29. Djelloul, E. M., A. Chabory, C. Morlaas, and R. Douvenot, "Closed-form expression for the radiation of an arbitrarily oriented stochastic elementary dipole," International Conference on Electromagnetics in Advanced Applications (ICEAA), Palermo, Italy, 2025.