Vol. 135
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-09-18
Structure-Preserving Discretization of the Magnetic Diffusion Equation Using DEC and FEEC
By
Progress In Electromagnetics Research M, Vol. 135, 22-33, 2025
Abstract
This paper presents a numerical approach for solving the magnetic diffusion equation using structure-preserving discretization methods, like Discrete Exterior Calculus (DEC) and Finite Element Exterior Calculus (FEEC). A detailed derivation of the DEC operators is provided, also their geometric foundation and relevance for discretizing differential forms on meshes. Furthermore, the paper includes an explicit introduction to the finite element exterior calculus framework, with a concise overview of the underlying functional spaces. The proposed formulations aim to preserve the topological and metric structure inherent in Maxwell's equation system. Numerical examples illustrate the stability and convergence of both methods, while also comparing their treatment of boundary conditions and discrete Hodge star construction which makes DEC and FEEC solvers spurious free and efficient useful for complex geometries.
Citation
Lukas Schöppner, and Matthias Friedrich, "Structure-Preserving Discretization of the Magnetic Diffusion Equation Using DEC and FEEC," Progress In Electromagnetics Research M, Vol. 135, 22-33, 2025.
doi:10.2528/PIERM25070104
References

1. Butori, Federico and Eliseo Luongo, "Mean-field magnetohydrodynamics models as scaling limits of stochastic induction equations," ArXiv:2406.07206, 2024.

2. Jafari, Amir, Ethan Vishniac, and Vignesh Vaikundaraman, "Magnetic stochasticity and diffusion," Physical Review E, Vol. 100, No. 4, 043205, 2019.
doi:10.1103/physreve.100.043205

3. Péron, Victor, "Asymptotic modelling of a skin effect in magnetic conductors," ArXiv:2502.07808, 2025.

4. Beck, Geoffrey, Sébastien Imperiale, and Patrick Joly, "Asymptotic modelling of Skin-effects in coaxial cables," SN Partial Differential Equations and Applications, Vol. 1, No. 6, 42, 2020.
doi:10.1007/s42985-020-00043-x

5. Ma, Yuhao and Taylor L. Hughes, "Quantum skin Hall effect," Physical Review B, Vol. 108, No. 10, L100301, 2023.
doi:10.1103/physrevb.108.l100301

6. Cartan, E., "Sur certaines expressions différentielles et le problème de Pfaff," Annales Scientifiques De I'École Normale Supérieure, Vol. 16, 239-332, 1899.

7. Arık, Metin, Ahmet Baykal, Tekin Dereli, and Taner Tanriverdi, "The exterior calculus of quadratic gravity," ArXiv:2411.00624, 2024.

8. Deschamps, G. A., "Electromagnetics and differential forms," Proceedings of the IEEE, Vol. 69, No. 6, 676-696, 1981.
doi:10.1109/proc.1981.12048

9. Hirani, Anil N., "Discrete exterior calculus," Ph.D. dissertation, California Institute of Technology, Pasadena, CA, 2003.

10. Ptáčková, Lenka and Luiz Velho, "A simple and complete discrete exterior calculus on general polygonal meshes," Computer Aided Geometric Design, Vol. 88, 102002, 2021.
doi:10.1016/j.cagd.2021.102002

11. Yang, Man, Hongyuan Fang, Dazhong Chen, Xueming Du, and Fuming Wang, "The conformal finite-difference time-domain simulation of GPR wave propagation in complex geoelectric structures," Geofluids, Vol. 2020, No. 1, 3069372, 2020.
doi:10.1155/2020/3069372

12. Lau, P., "Curvilinear finite difference method for three-dimensional potential problems," Journal of Computational Physics, Vol. 32, No. 3, 325-344, 1979.
doi:10.1016/0021-9991(79)90149-9

13. Silvester, Peter Peet and Ronald L. Ferrari, Finite Elements for Electrical Engineers, Cambridge University Press, Cambridge, 1996.
doi:10.1017/cbo9781139170611

14. Brenner, S. and L. Scott, The Mathematical Theory of Finite Element Methods, Springer, Berlin, 2008.
doi:10.1007/978-1-4757-3658-8

15. Ganesan, Sashikumaar and Lutz Tobiska, Finite Elements: Theory and Algorithms, Cambridge University Press, Cambridge, 2017.

16. Tobón, Luis, Jiefu Chen, and Qing Huo Liu, "Spurious solutions in mixed finite element method for Maxwell's equations: Dispersion analysis and new basis functions," Journal of Computational Physics, Vol. 230, No. 19, 7300-7310, 2011.
doi:10.1016/j.jcp.2011.05.035

17. Arnold, Douglas N., Finite Element Exterior Calculus, SIAM, Philadelphia, 2018.
doi:10.1137/1.9781611975543

18. Azerad, Pascal and Marien-Lorenzo Hanot, "Numerical solution of the div-curl problem by finite element exterior calculus," ArXiv:2201.06800, 2022.

19. Davidson, Peter Alan, Introduction to Magnetohydrodynamics, 2nd Ed., Vol. 55, Cambridge University Press, Cambridge, 2017.
doi:10.1017/9781316672853

20. Goedbloed, J. P., Rony Keppens, and Stefaan Poedts, Advanced Magnetohydrodynamics: with Applications to Laboratory and Astrophysical Plasmas, Cambridge University Press, Cambridge, 2010.

21. Leone, M., Theoretische Elektrotechnik: Elektromagnetische Feldtheorie für Ingenieure, Springer Vieweg, Berlin, 2021.

22. Sushch, Volodymyr, "2D discrete Hodge-Dirac operator on the torus," Symmetry, Vol. 14, No. 8, 1556, 2022.
doi:10.3390/sym14081556

23. Emam, Moataz H., Covariant Physics: From Classical Mechanics to General Relativity and Beyond, Oxford University Press, Oxford, 2021.

24. Abraham, Ralph, Jerrold E. Marsden, and Tudor Ratiu, Manifolds, Tensor Analysis, and Applications, 2nd Ed., Vol. 75, Springer, Berlin, 1988.
doi:10.1007/978-1-4612-1029-0

25. Landau, Lev Davidovich and E.M. Lifshitz, The Classical Theory of Fields: Volume 2, 4th Ed., Vol. 2, Butterworth-Heinemann, London, 1980.
doi:10.1063/1.3067575

26. Tu, Loring W., An Introduction to Manifolds, 2nd Ed., Springer, Berlin, 2011.
doi:10.1007/978-1-4419-7400-6

27. Rousseaux, Germain, "On the physical meaning of the gauge conditions of Classical Electromagnetism: The hydrodynamics analogue viewpoint," ArXiv:physics/0511047, 2005.

28. Whitney, Hassler, Geometric Integration Theory, Dover Publications, New York, 2012.
doi:10.1515/9781400877577

29. Zhang, Boyuan, Dong-Yeop Na, Dan Jiao, and Weng Cho Chew, "An A-Φ formulation solver in electromagnetics based on discrete exterior calculus," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 8, 11-21, 2022.
doi:10.1109/jmmct.2022.3230732

30. Desbrun, Mathieu, Anil N. Hirani, Melvin Leok, and Jerrold E. Marsden, "Discrete exterior calculus," ArXiv:math/0508341, 2005.

31. Moschandreou, Terry E., Keith Afas, and Khoa Nguyen, Theoretical and Computational Fluid Mechanics: Existence, Blow-up, and Discrete Exterior Calculus Algorithms, 1st Ed., Chapman and Hall/CRC, New York, 2024.

32. Boom, Pieter D., Odysseas Kosmas, Lee Margetts, and Andrey P. Jivkov, "A geometric formulation of linear elasticity based on discrete exterior calculus," International Journal of Solids and Structures, Vol. 236-237, 111345, 2022.
doi:10.1016/j.ijsolstr.2021.111345

33. Chen, Shu C. and Weng Cho Chew, "Electromagnetic theory with discrete exterior calculus," Progress In Electromagnetics Research, Vol. 159, 59-78, 2017.
doi:10.2528/pier17051501

34. Saksa, Tytti, "Comparison of finite element and discrete exterior calculus in computation of time-harmonic wave propagation with controllability," Journal of Computational and Applied Mathematics, Vol. 457, 116154, 2025.
doi:10.1016/j.cam.2024.116154

35. Chen, Shu C. and Weng Cho Chew, "Numerical electromagnetic frequency domain analysis with discrete exterior calculus," Journal of Computational Physics, Vol. 350, 668-689, 2017.
doi:10.1016/j.jcp.2017.08.068

36. Gu, David Xianfeng and Emil Saucan, Classical and Discrete Differential Geometry: Theory, Applications and Algorithms, 1st Ed., CRC Press, New York, 2023.

37. Logg, Anders, Kent-Andre Mardal, and Garth Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Vol. 84, Springer Berlin, Heidelberg, 2012.

38. Holzinger, Stefan, Joachim Schöberl, and Johannes Gerstmayr, "The equations of motion for a rigid body using non-redundant unified local velocity coordinates," Multibody System Dynamics, Vol. 48, No. 3, 283-309, 2020.
doi:10.1007/s11044-019-09700-5

39. Dubois, Franccois, Isabelle Greff, and Charles Pierre, "Raviart-thomas finite elements of petrov-galerkin type," ESAIM: Mathematical Modelling and Numerical Analysis (ESAIM: M2AN), Vol. 53, No. 5, 1553-1576, 2019.
doi:10.1051/m2an/2019020

40. Hiptmair, Ralf and Jinchao Xu, "Nodal auxiliary space preconditioning in H(curl) and H(div) spaces," SIAM Journal on Numerical Analysis, Vol. 45, No. 6, 2483-2509, 2007.
doi:10.1137/060660588

41. Stern, Ari and Enrico Zampa, "Multisymplecticity in finite element exterior calculus," Foundations of Computational Mathematics, 1-50, 2025.
doi:10.1007/s10208-025-09720-y

42. Sánchez, Elena Moral, Martin Campos Pinto, Yaman Güçlü, and Omar Maj, "Time-splitting methods for the cold-plasma model using Finite Element Exterior Calculus," ArXiv Preprint ArXiv:2501.16991, 2025.

43. Jin, Jian-Ming, The Finite Element Method in Electromagnetics, John Wiley & Sons, 2015.

44. Robinson, James C., An Introduction to Functional Analysis, 1st Ed., Cambridge University Press, 2020.
doi:10.1017/9781139030267

45. Davies, Alan J., The Finite Element Method: An Introduction with Partial Differential Equations, 2nd Ed., Oxford University Press, Oxford, 2011.

46. Anjam, I. and J. Valdman, "Fast MATLAB assembly of FEM matrices in 2D and 3D: Edge elements," Applied Mathematics and Computation, Vol. 267, 252-263, 2015.
doi:10.1016/j.amc.2015.03.105

47. Zhang, Qian, Lixiu Wang, and Zhimin Zhang, "H(curl)-conforming finite elements in 2 dimensions and applications to the quad-curl problem," SIAM Journal on Scientific Computing, Vol. 41, No. 3, A1527-A1547, 2019.
doi:10.1137/18m1199988

48. Kalantzis, Vasileios, Anshul Gupta, Lior Horesh, Tomasz Nowicki, Mark S. Squillante, Chai Wah Wu, Tayfun Gokmen, and Haim Avron, "Solving sparse linear systems with approximate inverse preconditioners on analog devices," 2021 IEEE High Performance Extreme Computing Conference (HPEC), 1-7, Waltham, MA, USA, 2021.
doi:10.1109/hpec49654.2021.9622816

49. Jia, Zhongxiao and Wenjie Kang, "A residual based sparse approximate inverse preconditioning procedure for large sparse linear systems," Numerical Linear Algebra with Applications, Vol. 24, No. 2, e2080, 2017.
doi:10.1002/nla.2080

50. Barata, João Carlos Alves and Mahir Saleh Hussein, "The Moore-Penrose pseudoinverse: A tutorial review of the theory," Brazilian Journal of Physics, Vol. 42, No. 1, 146-165, 2012.
doi:10.1007/s13538-011-0052-z