1. Butori, Federico and Eliseo Luongo, "Mean-field magnetohydrodynamics models as scaling limits of stochastic induction equations," ArXiv:2406.07206, 2024.
2. Jafari, Amir, Ethan Vishniac, and Vignesh Vaikundaraman, "Magnetic stochasticity and diffusion," Physical Review E, Vol. 100, No. 4, 043205, 2019.
doi:10.1103/physreve.100.043205
3. Péron, Victor, "Asymptotic modelling of a skin effect in magnetic conductors," ArXiv:2502.07808, 2025.
4. Beck, Geoffrey, Sébastien Imperiale, and Patrick Joly, "Asymptotic modelling of Skin-effects in coaxial cables," SN Partial Differential Equations and Applications, Vol. 1, No. 6, 42, 2020.
doi:10.1007/s42985-020-00043-x
5. Ma, Yuhao and Taylor L. Hughes, "Quantum skin Hall effect," Physical Review B, Vol. 108, No. 10, L100301, 2023.
doi:10.1103/physrevb.108.l100301
6. Cartan, E., "Sur certaines expressions différentielles et le problème de Pfaff," Annales Scientifiques De I'École Normale Supérieure, Vol. 16, 239-332, 1899.
7. Arık, Metin, Ahmet Baykal, Tekin Dereli, and Taner Tanriverdi, "The exterior calculus of quadratic gravity," ArXiv:2411.00624, 2024.
8. Deschamps, G. A., "Electromagnetics and differential forms," Proceedings of the IEEE, Vol. 69, No. 6, 676-696, 1981.
doi:10.1109/proc.1981.12048
9. Hirani, Anil N., "Discrete exterior calculus," Ph.D. dissertation, California Institute of Technology, Pasadena, CA, 2003.
10. Ptáčková, Lenka and Luiz Velho, "A simple and complete discrete exterior calculus on general polygonal meshes," Computer Aided Geometric Design, Vol. 88, 102002, 2021.
doi:10.1016/j.cagd.2021.102002
11. Yang, Man, Hongyuan Fang, Dazhong Chen, Xueming Du, and Fuming Wang, "The conformal finite-difference time-domain simulation of GPR wave propagation in complex geoelectric structures," Geofluids, Vol. 2020, No. 1, 3069372, 2020.
doi:10.1155/2020/3069372
12. Lau, P., "Curvilinear finite difference method for three-dimensional potential problems," Journal of Computational Physics, Vol. 32, No. 3, 325-344, 1979.
doi:10.1016/0021-9991(79)90149-9
13. Silvester, Peter Peet and Ronald L. Ferrari, Finite Elements for Electrical Engineers, Cambridge University Press, Cambridge, 1996.
doi:10.1017/cbo9781139170611
14. Brenner, S. and L. Scott, The Mathematical Theory of Finite Element Methods, Springer, Berlin, 2008.
doi:10.1007/978-1-4757-3658-8
15. Ganesan, Sashikumaar and Lutz Tobiska, Finite Elements: Theory and Algorithms, Cambridge University Press, Cambridge, 2017.
16. Tobón, Luis, Jiefu Chen, and Qing Huo Liu, "Spurious solutions in mixed finite element method for Maxwell's equations: Dispersion analysis and new basis functions," Journal of Computational Physics, Vol. 230, No. 19, 7300-7310, 2011.
doi:10.1016/j.jcp.2011.05.035
17. Arnold, Douglas N., Finite Element Exterior Calculus, SIAM, Philadelphia, 2018.
doi:10.1137/1.9781611975543
18. Azerad, Pascal and Marien-Lorenzo Hanot, "Numerical solution of the div-curl problem by finite element exterior calculus," ArXiv:2201.06800, 2022.
19. Davidson, Peter Alan, Introduction to Magnetohydrodynamics, 2nd Ed., Vol. 55, Cambridge University Press, Cambridge, 2017.
doi:10.1017/9781316672853
20. Goedbloed, J. P., Rony Keppens, and Stefaan Poedts, Advanced Magnetohydrodynamics: with Applications to Laboratory and Astrophysical Plasmas, Cambridge University Press, Cambridge, 2010.
21. Leone, M., Theoretische Elektrotechnik: Elektromagnetische Feldtheorie für Ingenieure, Springer Vieweg, Berlin, 2021.
22. Sushch, Volodymyr, "2D discrete Hodge-Dirac operator on the torus," Symmetry, Vol. 14, No. 8, 1556, 2022.
doi:10.3390/sym14081556
23. Emam, Moataz H., Covariant Physics: From Classical Mechanics to General Relativity and Beyond, Oxford University Press, Oxford, 2021.
24. Abraham, Ralph, Jerrold E. Marsden, and Tudor Ratiu, Manifolds, Tensor Analysis, and Applications, 2nd Ed., Vol. 75, Springer, Berlin, 1988.
doi:10.1007/978-1-4612-1029-0
25. Landau, Lev Davidovich and E.M. Lifshitz, The Classical Theory of Fields: Volume 2, 4th Ed., Vol. 2, Butterworth-Heinemann, London, 1980.
doi:10.1063/1.3067575
26. Tu, Loring W., An Introduction to Manifolds, 2nd Ed., Springer, Berlin, 2011.
doi:10.1007/978-1-4419-7400-6
27. Rousseaux, Germain, "On the physical meaning of the gauge conditions of Classical Electromagnetism: The hydrodynamics analogue viewpoint," ArXiv:physics/0511047, 2005.
28. Whitney, Hassler, Geometric Integration Theory, Dover Publications, New York, 2012.
doi:10.1515/9781400877577
29. Zhang, Boyuan, Dong-Yeop Na, Dan Jiao, and Weng Cho Chew, "An A-Φ formulation solver in electromagnetics based on discrete exterior calculus," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 8, 11-21, 2022.
doi:10.1109/jmmct.2022.3230732
30. Desbrun, Mathieu, Anil N. Hirani, Melvin Leok, and Jerrold E. Marsden, "Discrete exterior calculus," ArXiv:math/0508341, 2005.
31. Moschandreou, Terry E., Keith Afas, and Khoa Nguyen, Theoretical and Computational Fluid Mechanics: Existence, Blow-up, and Discrete Exterior Calculus Algorithms, 1st Ed., Chapman and Hall/CRC, New York, 2024.
32. Boom, Pieter D., Odysseas Kosmas, Lee Margetts, and Andrey P. Jivkov, "A geometric formulation of linear elasticity based on discrete exterior calculus," International Journal of Solids and Structures, Vol. 236-237, 111345, 2022.
doi:10.1016/j.ijsolstr.2021.111345
33. Chen, Shu C. and Weng Cho Chew, "Electromagnetic theory with discrete exterior calculus," Progress In Electromagnetics Research, Vol. 159, 59-78, 2017.
doi:10.2528/pier17051501
34. Saksa, Tytti, "Comparison of finite element and discrete exterior calculus in computation of time-harmonic wave propagation with controllability," Journal of Computational and Applied Mathematics, Vol. 457, 116154, 2025.
doi:10.1016/j.cam.2024.116154
35. Chen, Shu C. and Weng Cho Chew, "Numerical electromagnetic frequency domain analysis with discrete exterior calculus," Journal of Computational Physics, Vol. 350, 668-689, 2017.
doi:10.1016/j.jcp.2017.08.068
36. Gu, David Xianfeng and Emil Saucan, Classical and Discrete Differential Geometry: Theory, Applications and Algorithms, 1st Ed., CRC Press, New York, 2023.
37. Logg, Anders, Kent-Andre Mardal, and Garth Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Vol. 84, Springer Berlin, Heidelberg, 2012.
38. Holzinger, Stefan, Joachim Schöberl, and Johannes Gerstmayr, "The equations of motion for a rigid body using non-redundant unified local velocity coordinates," Multibody System Dynamics, Vol. 48, No. 3, 283-309, 2020.
doi:10.1007/s11044-019-09700-5
39. Dubois, Franccois, Isabelle Greff, and Charles Pierre, "Raviart-thomas finite elements of petrov-galerkin type," ESAIM: Mathematical Modelling and Numerical Analysis (ESAIM: M2AN), Vol. 53, No. 5, 1553-1576, 2019.
doi:10.1051/m2an/2019020
40. Hiptmair, Ralf and Jinchao Xu, "Nodal auxiliary space preconditioning in H(curl) and H(div) spaces," SIAM Journal on Numerical Analysis, Vol. 45, No. 6, 2483-2509, 2007.
doi:10.1137/060660588
41. Stern, Ari and Enrico Zampa, "Multisymplecticity in finite element exterior calculus," Foundations of Computational Mathematics, 1-50, 2025.
doi:10.1007/s10208-025-09720-y
42. Sánchez, Elena Moral, Martin Campos Pinto, Yaman Güçlü, and Omar Maj, "Time-splitting methods for the cold-plasma model using Finite Element Exterior Calculus," ArXiv Preprint ArXiv:2501.16991, 2025.
43. Jin, Jian-Ming, The Finite Element Method in Electromagnetics, John Wiley & Sons, 2015.
44. Robinson, James C., An Introduction to Functional Analysis, 1st Ed., Cambridge University Press, 2020.
doi:10.1017/9781139030267
45. Davies, Alan J., The Finite Element Method: An Introduction with Partial Differential Equations, 2nd Ed., Oxford University Press, Oxford, 2011.
46. Anjam, I. and J. Valdman, "Fast MATLAB assembly of FEM matrices in 2D and 3D: Edge elements," Applied Mathematics and Computation, Vol. 267, 252-263, 2015.
doi:10.1016/j.amc.2015.03.105
47. Zhang, Qian, Lixiu Wang, and Zhimin Zhang, "H(curl)-conforming finite elements in 2 dimensions and applications to the quad-curl problem," SIAM Journal on Scientific Computing, Vol. 41, No. 3, A1527-A1547, 2019.
doi:10.1137/18m1199988
48. Kalantzis, Vasileios, Anshul Gupta, Lior Horesh, Tomasz Nowicki, Mark S. Squillante, Chai Wah Wu, Tayfun Gokmen, and Haim Avron, "Solving sparse linear systems with approximate inverse preconditioners on analog devices," 2021 IEEE High Performance Extreme Computing Conference (HPEC), 1-7, Waltham, MA, USA, 2021.
doi:10.1109/hpec49654.2021.9622816
49. Jia, Zhongxiao and Wenjie Kang, "A residual based sparse approximate inverse preconditioning procedure for large sparse linear systems," Numerical Linear Algebra with Applications, Vol. 24, No. 2, e2080, 2017.
doi:10.1002/nla.2080
50. Barata, João Carlos Alves and Mahir Saleh Hussein, "The Moore-Penrose pseudoinverse: A tutorial review of the theory," Brazilian Journal of Physics, Vol. 42, No. 1, 146-165, 2012.
doi:10.1007/s13538-011-0052-z