Vol. 162
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-19
Hyperspectral Image Denoising Using Spatial Spectral Attention Network Based on Transformer
By
Progress In Electromagnetics Research C, Vol. 162, 34-43, 2025
Abstract
Although Transformer models have made significant progress in the field of hyperspectral image denoising, their original architecture still has limitations in processing the spatial and spectral correlations of images. It often results in the loss of details in spatial features and insufficient exploration of the uniqueness of different spectral bands. To overcome these challenges, this paper proposes a Transformer based spatial spectral attention network aimed at enhancing the utilization efficiency of spatial spectral correlations. In response to the common problem of over smoothing in spatial feature processing, a dual channel spatial feature fusion module is introduced, which effectively enhances the capture of spatial details and ensures clear reproduction of image textures and edges. Meanwhile, in the spectral dimension, a multi-scale spectral feature extraction with self-attention mechanism is applied, which can sensitively identify and utilize the differences between spectral bands, thereby achieving more accurate feature extraction at the spectral level. By integrating residual connections in the spatial spectral feature extraction layer, the model can efficiently fuse spatial and spectral information, ultimately achieving high-quality denoising. The experimental results have verified the excellent performance of this method on both the ICVL dataset and the Urban real dataset, achieving good denoising results and demonstrating significant advantages in maintaining image details and spectral fidelity.
Citation
Xiao-Zhen Ren, Jing Cui, Yi Hu, Zhipeng Guo, and Yingying Niu, "Hyperspectral Image Denoising Using Spatial Spectral Attention Network Based on Transformer," Progress In Electromagnetics Research C, Vol. 162, 34-43, 2025.
doi:10.2528/PIERC25070802
References

1. Qin, Xuexiang, Yuxiang Zhang, and Yanni Dong, "Domain alignment dynamic spectral and spatial feature fusion for hyperspectral change detection," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 18, 557-568, 2025.
doi:10.1109/jstars.2024.3495217

2. Song, Shao-Zhong, Yuan-Yuan Liu, Zi-Yang Zhou, Xing Teng, Ji-Hong Li, Jun-Ling Liu, and Xun Gao, "Identification of sorghum breed by hyperspectral image technology," Spectroscopy and Spectral Analysis, Vol. 44, No. 5, 1392-1397, 2024.
doi:10.3964/j.issn.1000-0593(2024)05-1392-06

3. Lu, Bing, Phuong D. Dao, Jiangui Liu, Yuhong He, and Jiali Shang, "Recent advances of hyperspectral imaging technology and applications in agriculture," Remote Sensing, Vol. 12, No. 16, 2659, 2020.
doi:10.3390/rs12162659

4. Zhang, Jianan, Qing Zhang, Jiansheng Wang, Yan Wang, and Qingli Li, "A dual branch based stitching method for whole slide hyperspectral pathological imaging," Displays, Vol. 89, 103090, 2025.
doi:10.1016/j.displa.2025.103090

5. Wu, Guoyong, Mohammed A. A. Al-Qaness, Dalal Al-Alimi, Abdelghani Dahou, Mohamed Abd Elaziz, and Ahmed A. Ewees, "Hyperspectral image classification using graph convolutional network: A comprehensive review," Expert Systems with Applications, Vol. 257, 125106, 2024.
doi:10.1016/j.eswa.2024.125106

6. Zhao, Xi-Le, Hao Zhang, Tai-Xiang Jiang, Michael K. Ng, and Xiong-Jun Zhang, "Fast algorithm with theoretical guarantees for constrained low-tubal-rank tensor recovery in hyperspectral images denoising," Neurocomputing, Vol. 413, 397-409, 2020.
doi:10.1016/j.neucom.2020.07.022

7. Zhang, Aiyi, Fulai Liu, and Ruiyan Du, "Probability-weighted tensor robust PCA with CP decomposition for hyperspectral image restoration," Signal Processing, Vol. 209, 109051, 2023.
doi:10.1016/j.sigpro.2023.109051

8. Zhang, Qiang, Yushuai Dong, Qiangqiang Yuan, Meiping Song, and Haoyang Yu, "Combined deep priors with low-rank tensor factorization for hyperspectral image restoration," IEEE Geoscience and Remote Sensing Letters, Vol. 20, 1-5, 2023.
doi:10.1109/lgrs.2023.3236341

9. Wang, Zhicheng, Michael K. Ng, Lina Zhuang, Lianru Gao, and Bing Zhang, "Nonlocal self-similarity-based hyperspectral remote sensing image denoising with 3-D convolutional neural network," IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, 1-17, 2022.
doi:10.1109/tgrs.2022.3182144

10. Zha, Zhiyuan, Bihan Wen, Xin Yuan, Jiachao Zhang, Jiantao Zhou, Yilong Lu, and Ce Zhu, "Nonlocal structured sparsity regularization modeling for hyperspectral image denoising," IEEE Transactions on Geoscience and Remote Sensing, Vol. 61, 1-16, 2023.
doi:10.1109/tgrs.2023.3269224

11. Wang, Peng, Liguo Wang, Henry Leung, and Gong Zhang, "Super-resolution mapping based on spatial-spectral correlation for spectral imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 59, No. 3, 2256-2268, 2020.
doi:10.1109/tgrs.2020.3004353

12. Zhou, Yang, Yong Chen, Jinshan Zeng, Wei He, and Min Huang, "Unidirectional spatial and spectral smoothed tensor ring decomposition for hyperspectral image denoising and destriping," IEEE Geoscience and Remote Sensing Letters, Vol. 21, 1-5, 2024.
doi:10.1109/lgrs.2024.3412804

13. Zhao, Shuheng, Xiaolin Zhu, Denghong Liu, Fei Xu, Yan Wang, Liupeng Lin, Xuehong Chen, and Qiangqiang Yuan, "A hyperspectral image denoising method based on land cover spectral autocorrelation," International Journal of Applied Earth Observation and Geoinformation, Vol. 123, 103481, 2023.
doi:10.1016/j.jag.2023.103481

14. Aharon, M., M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Transactions on Signal Processing, Vol. 54, No. 11, 4311-4322, 2006.
doi:10.1109/tsp.2006.881199

15. Dabov, Kostadin, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian, "Image denoising by sparse 3-D transform-domain collaborative filtering," IEEE Transactions on Image Processing, Vol. 16, No. 8, 2080-2095, 2007.
doi:10.1109/tip.2007.901238

16. Chang, Yi, Luxin Yan, and Sheng Zhong, "Hyper-Laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5901-5909, Honolulu, HI, USA, 2017.
doi:10.1109/cvpr.2017.625

17. Peng, Yi, Deyu Meng, Zongben Xu, Chenqiang Gao, Yi Yang, and Biao Zhang, "Decomposable nonlocal tensor dictionary learning for multispectral image denoising," 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2949-2956, Columbus, OH, USA, 2014.
doi:10.1109/cvpr.2014.377

18. Peng, Jiangtao, Weiwei Sun, Heng-Chao Li, Wei Li, Xiangchao Meng, Chiru Ge, and Qian Du, "Low-rank and sparse representation for hyperspectral image processing: A review," IEEE Geoscience and Remote Sensing Magazine, Vol. 10, No. 1, 10-43, 2022.
doi:10.1109/mgrs.2021.3075491

19. Maggioni, Matteo, Vladimir Katkovnik, Karen Egiazarian, and Alessandro Foi, "Nonlocal transform-domain filter for volumetric data denoising and reconstruction," IEEE Transactions on Image Processing, Vol. 22, No. 1, 119-133, 2013.
doi:10.1109/tip.2012.2210725

20. Meng, Pinchao, Zhaobin Xu, Xianchao Wang, Weishi Yin, and Hongyu Liu, "A novel method for solving the inverse spectral problem with incomplete data," Journal of Computational and Applied Mathematics, Vol. 463, 116525, 2025.
doi:10.1016/j.cam.2025.116525

21. Jiang, Yan, Hongyu Liu, Tianhao Ni, and Kai Zhang, "Inverse problems for nonlinear progressive waves," Calculus of Variations and Partial Differential Equations, Vol. 64, No. 4, 116, 2025.
doi:10.1007/s00526-025-02964-0

22. Yin, Weishi, Zhengxuan Shen, Pinchao Meng, and Hongyu Liu, "An online interactive physics-informed adversarial network for solving mean field games," Engineering Analysis with Boundary Elements, Vol. 169, 106002, 2024.
doi:10.1016/j.enganabound.2024.106002

23. Nguyen, Han V., Magnus O. Ulfarsson, Jakob Sigurdsson, and Johannes R. Sveinsson, "Deep sparse and low-rank prior for hyperspectral image denoising," IGARSS 2022 --- 2022 IEEE International Geoscience and Remote Sensing Symposium, 1217-1220, Kuala Lumpur, Malaysia, 2022.
doi:10.1109/IGARSS46834.2022.9884071

24. Yuan, Qiangqiang, Qiang Zhang, Jie Li, Huanfeng Shen, and Liangpei Zhang, "Hyperspectral image denoising employing a spatial-spectral deep residual convolutional neural network," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 2, 1205-1218, 2019.
doi:10.1109/tgrs.2018.2865197

25. Dusmanu, Mihai, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys, Josef Sivic, Akihiko Torii, and Torsten Sattler, "D2-Net: A trainable CNN for joint description and detection of local features," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8084-8093, Long Beach, CA, USA, 2019.
doi:10.1109/cvpr.2019.00828

26. Wei, Kaixuan, Ying Fu, and Hua Huang, "3-D quasi-recurrent neural network for hyperspectral image denoising," IEEE Transactions on Neural Networks and Learning Systems, Vol. 32, No. 1, 363-375, 2021.
doi:10.1109/tnnls.2020.2978756

27. Maffei, Alessandro, Juan M. Haut, Mercedes Eugenia Paoletti, Javier Plaza, Lorenzo Bruzzone, and Antonio Plaza, "A single model CNN for hyperspectral image denoising," IEEE Transactions on Geoscience and Remote Sensing, Vol. 58, No. 4, 2516-2529, 2020.
doi:10.1109/tgrs.2019.2952062

28. Wang, Wenhai, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao, "Pyramid vision transformer: A versatile backbone for dense prediction without convolutions," 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 568-578, Montreal, QC, Canada, 2021.
doi:10.1109/ICCV48922.2021.00061

29. Li, Miaoyu, Ji Liu, Ying Fu, Yulun Zhang, and Dejing Dou, "Spectral enhanced rectangle transformer for hyperspectral image denoising," 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 5805-5814, Vancouver, BC, Canada, 2023.
doi:10.1109/CVPR52729.2023.00562

30. Zhang, Qiang, Yushuai Dong, Yaming Zheng, Haoyang Yu, Meiping Song, Lifu Zhang, and Qiangqiang Yuan, "Three-dimension spatial-spectral attention transformer for hyperspectral image denoising," IEEE Transactions on Geoscience and Remote Sensing, Vol. 62, 1-13, 2024.
doi:10.1109/tgrs.2024.3458174

31. Wang, Zhendong, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li, "Uformer: A general U-shaped transformer for image restoration," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 17683-17693, New Orleans, LA, USA, 2022.
doi:10.1109/CVPR52688.2022.01716

32. Pang, Li, Weizhen Gu, and Xiangyong Cao, "TRQ3DNet: A 3D quasi-recurrent and transformer based network for hyperspectral image denoising," Remote Sensing, Vol. 14, No. 18, 4598, 2022.
doi:10.3390/rs14184598

33. Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby, "An image is worth 16 × 16 words: Transformers for image recognition at scale," arXiv:2010.11929, 2020.
doi:https://doi.org/10.48550/arXiv.2010.11929

34. Arad, Boaz and Ohad Ben-Shahar, "Sparse recovery of hyperspectral signal from natural RGB images," Computer Vision-ECCV 2016: 14th European Conference, 19-34, Amsterdam, The Netherlands, 2016.
doi:10.1007/978-3-319-46478-7_2

35. Kalman, Linda S. and Edward M. Bassett III, "Classification and material identification in an urban environment using HYDICE hyperspectral data," Imaging Spectrometry III, Vol. 3118, 57-68, 1997.
doi:10.1117/12.283843

36. Kingma, Diederik P. and Jimmy Ba, "Adam: A method for stochastic optimization," The 3rd International Conference for Learning Representations, San Diego, USA, 2015.
doi:https://doi.org/10.48550/arXiv.1412.6980