Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-08-21
Modal Analysis of Underground Cables in Stratified Frequency-Dependent Soils Using a Derivative-Free Iterative Method
By
Progress In Electromagnetics Research C, Vol. 159, 17-26, 2025
Abstract
This paper examines the impact of soil stratification and the frequency dependence (FD) of the Earth's electrical parameters on the transient response of underground cable systems, accounting for both earth-return admittance and impedance. A derivative-free iterative approach is proposed to overcome issues of discontinuous modal transformation matrices that occur at certain frequencies when using conventional diagonalization algorithms. This method ensures smooth and continuous eigenvector tracking. Transient voltages and currents along cables are computed using a modal-domain-based transmission line model combined with Numerical Inverse Laplace Transform (NILT). Simulation results validate the proposed method's accuracy and stability, and highlight the significant influence of the stratified frequency-dependent (SFD) ground under various operating conditions. Finally, a reduced equivalent model of the three-phase underground system is established to facilitate further analysis.
Citation
Yahia Serbouti, and Abderrahman Maaouni, "Modal Analysis of Underground Cables in Stratified Frequency-Dependent Soils Using a Derivative-Free Iterative Method," Progress In Electromagnetics Research C, Vol. 159, 17-26, 2025.
doi:10.2528/PIERC25071005
References

1. Pollaczek, Felix, "Uber das Feld einer unendlich langen wechselstromdurch-flossen Einfachleitung," Elektr. Nachr. Technik, Vol. 3, No. 9, 339-360, 1926.
doi:10.1002/cite.330550610

2. Sunde, E. D., Earth Conduction Effects in Transmission Systems, 2nd Ed., 99-139, Dover Publications, New York, NY, USA, 1968.
doi:10.1002/j.1538-7305.1954.tb02360.x

3. Carson, John R., "Ground return impedance: Underground wire with earth return," Bell System Technical Journal, Vol. 8, No. 1, 94-98, 1929.
doi:10.1002/j.1538-7305.1929.tb02307.x

4. Wait, James R., "Electromagnetic wave propagation along a buried insulated wire," Canadian Journal of Physics, Vol. 50, No. 20, 2402-2409, 1972.
doi:10.1139/p72-318

5. Bridges, G. E. J., "Fields generated by bare and insulated cables buried in a lossy half-space," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 1, 140-146, Jan. 1992.
doi:10.1109/36.124224

6. Zhang, Boyuan, Jun Zou, Xuelong Du, Jaebok Lee, and Mun-No Ju, "Ground admittance of an underground insulated conductor and its characteristic in lightning induced disturbance problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 3, 894-901, Jun. 2017.
doi:10.1109/temc.2016.2625980

7. Papadopoulos, Theofilos A., Dimitrios A. Tsiamitros, and Grigoris K. Papagiannis, "Impedances and admittances of underground cables for the homogeneous earth case," IEEE Transactions on Power Delivery, Vol. 25, No. 2, 961-969, Apr. 2010.
doi:10.1109/tpwrd.2009.2034797

8. Xue, Haoyan, Akihiro Ametani, Jean Mahseredjian, and Ilhan Kocar, "Generalized formulation of earth-return impedance/admittance and surge analysis on underground cables," IEEE Transactions on Power Delivery, Vol. 33, No. 6, 2654-2663, Dec. 2018.
doi:10.1109/tpwrd.2018.2796089

9. Li, Zhen, Jinliang He, Bo Zhang, and Zhanqing Yu, "Influence of frequency characteristics of soil parameters on ground-return transmission line parameters," Electric Power Systems Research, Vol. 139, 127-132, 2016.
doi:10.1016/j.epsr.2015.07.020

10. De Conti, Alberto and Maique Paulo S. Emidio, "Extension of a modal-domain transmission line model to include frequency-dependent ground parameters," Electric Power Systems Research, Vol. 138, 120-130, 2016.
doi:10.1016/j.epsr.2016.02.032

11. De Lima, Antonio Carlos Siqueira and Carlos Portela, "Inclusion of frequency-dependent soil parameters in transmission-line modeling," IEEE Transactions on Power Delivery, Vol. 22, No. 1, 492-499, Jan. 2007.
doi:10.1109/tpwrd.2006.881582

12. Garbelim Pascoalato, Tainá Fernanda, Anderson Ricardo Justo de Araújo, Jaimis Sajid Leon Colqui, Sérgio Kurokawa, and José Pissolato Filho, "A comparison of frequency-dependent soil models: Electromagnetic transient analysis of overhead transmission lines using modal decomposition," Energies, Vol. 15, No. 5, 1687, 2022.
doi:10.3390/en15051687

13. Papadopoulos, Theofilos A., Z. G. Datsios, A. I. Chrysochos, P. N. Mikropoulos, and G. K. Papagiannis, "Impact of the frequency-dependent soil electrical properties on the electromagnetic field propagation in underground cables," International Conference on Power Systems Transients (IPST), Perpignan, France, Jun. 2019.
doi:10.1109/ptc.2013.6652362

14. Xue, Haoyan, Akihiro Ametani, Yanfei Liu, and Jeewantha De Silva, "Effect of frequency-dependent soil parameters on wave propagation and transient behaviors of underground cables," International Journal of Electrical Power & Energy Systems, Vol. 122, 106163, 2020.
doi:10.1016/j.ijepes.2020.106163

15. Longmire, Conrad L. and Ken S. Smith, "A universal impedance for soils," Topical Report, Defense Nuclear Agency, Santa Barbara, CA, USA, 1975.
doi:10.21236/ada025759

16. Alipio, Rafael and Silverio Visacro, "Modeling the frequency dependence of electrical parameters of soil," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 5, 1163-1171, Oct. 2014.
doi:10.1109/temc.2014.2313977

17. Datsios, Z.G. and P. N. Mikropoulos, "Characterization of the frequency dependence of the electrical properties of sandy soil with variable grain size and water content," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 26, No. 3, 904-912, Jun. 2019.
doi:10.1109/tdei.2019.8726040

18. Marti, L., "Simulation of transients in underground cables with frequency-dependent modal transformation matrices," IEEE Transactions on Power Delivery, Vol. 3, No. 3, 1099-1110, Jul. 1988.
doi:10.1109/61.193892

19. Carson, John R., "Wave propagation in overhead wires with ground return," The Bell System Technical Journal, Vol. 5, No. 4, 539-554, 1926.
doi:10.1002/j.1538-7305.1926.tb00122.x

20. Nakagawa, M. and K. Iwamoto, "Earth-return impedance for the multi-layer case," IEEE Transactions on Power Apparatus and Systems, Vol. 95, No. 2, 671-676, Mar. 1976.
doi:10.1109/t-pas.1976.32149

21. Papadopoulos, Theofilos A., Zacharias G. Datsios, Andreas I. Chrysochos, Pantelis N. Mikropoulos, and Grigoris K. Papagiannis, "Wave propagation characteristics and electromagnetic transient analysis of underground cable systems considering frequency-dependent soil properties," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 1, 259-267, 2021.
doi:10.1109/temc.2020.2986821

22. Papadopoulos, T. A., D. A. Tsiamitros, and G. K. Papagiannis, "Earth return admittances and impedances of underground cables in non-homogeneous earth," IET Generation, Transmission & Distribution, Vol. 5, No. 2, 161-171, 2011.
doi:10.1049/iet-gtd.2010.0228

23. Ametani, Akihiro, Teruo Ohno, and Naoto Nagaoka, Cable System Transients: Theory, Modeling and Simulation, 1st Ed., Wiley-IEEE Press, 2015.
doi:10.1002/9781118702154

24. Paul, Clayton R., Analysis of Multiconductor Transmission Lines, 2nd Ed., Wiley-IEEE Press, 2007.
doi:10.1109/9780470547212

25. Zlatunić, I., S. Vodopija, and R. Goić, "Mode switching in modal domain models of overhead lines and underground cables," IPST --- International Conference on Power System Transients, Paper, No. 15IPST203, 2015.

26. Wedepohl, L. M., H. V. Nguyen, and G. D. Irwin, "Frequency-dependent transformation matrices for untransposed transmission lines using Newton-Raphson method," IEEE Transactions on Power Systems, Vol. 11, No. 3, 1538-1546, Aug. 1996.
doi:10.1109/59.535695

27. Chrysochos, Andreas I., Theofilos A. Papadopoulos, and Grigoris K. Papagiannis, "Robust calculation of frequency-dependent transmission-line transformation matrices using the Levenberg-Marquardt method," IEEE Transactions on Power Delivery, Vol. 29, No. 4, 1621-1629, Aug. 2014.
doi:10.1109/tpwrd.2013.2284504

28. Galloway, R. H., W. B. Shorrocks, and L. M. Wedepohl, "Calculation of electrical parameters for short and long polyphase transmission lines," Proceedings of the Institution of Electrical Engineers, Vol. 111, No. 12, 2051-2059, 1964.
doi:10.1049/piee.1964.0331

29. Rostami, Mozafar, Taher Lotfi, and Ali Brahmand, "A fast derivative-free iteration scheme for nonlinear systems and integral equations," Mathematics, Vol. 7, No. 7, 637, 2019.
doi:10.3390/math7070637

30. Griffith, J. R. and M. S. Nakhla, "Time-domain analysis of lossy coupled transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 10, 1480-1487, Oct. 1990.
doi:10.1109/22.58689

31. Belganche, Zeyneb, Abderrahman Maaouni, Ahmed Mzerd, and Amine Bouziane, "Equivalent model from two layers stratified media to homogeneous media for overhead lines," Progress In Electromagnetics Research M, Vol. 41, 63-72, 2015.
doi:10.2528/pierm14121509

32. Brancik, Lubomir, "Programs for fast numerical inversion of Laplace transforms in MATLAB language environment," Proceedings of the 7th Conference MATLAB, Vol. 99, 27-39, 1999.

33. Cavka, Damir, Nicolas Mora, and Farhad Rachidi, "A comparison of frequency-dependent soil models: Application to the analysis of grounding systems," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 1, 177-187, Feb. 2014.
doi:10.1109/temc.2013.2271913

34. Papadopoulos, T. A., Z. G. Datsios, A. I. Chrysochos, P. N. Mikropoulos, and G. K. Papagiannis, "Modal propagation characteristics and transient analysis of multiconductor cable systems buried in lossy dispersive soils," Electric Power Systems Research, Vol. 196, 107249, 2021.
doi:10.1016/j.epsr.2021.107249