Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-13
Deep Learning Assisted Microwave Sensor for Dielectric Material Classification
By
Progress In Electromagnetics Research C, Vol. 159, 261-272, 2025
Abstract
This paper introduces a deep learning assisted sensor for material classification based on two adjacent split-ring resonators unit cell sensor. This sensor operates in the frequency range from 7 GHz to 8 GHz. The sensor is designed to differentiate between different dielectric materials based on their reflection and transmission properties. A dielectric container is used to hold different samples. Reflection and transmission coefficients for different materials are used for classification between different dielectric materials. These materials are also characterized by using Dielectric Assessment Kite (DAK) for verification with the proposed method. The Dual Split Ring Resonator (DSRR) unit cell enhanced resonance characteristics facilitate the classification process for distinguishing different dielectric materials. The measured results of the proposed sensor exhibit a broad detection range, accurately identifying various samples based on their unique resonant frequency responses. The proposed sensor finds utility in industrial applications, identifying and categorizing various different dielectric materials. In addition, the proposed design is used to measure a mixture of two different materials with different volume mixing ratios. The measured samples are used to train a convolution neural network to predict the mixing ratio from the measured S-parameters. The combination of this sensor and the trained model is found to be an efficient tool that determines the mixing ratios of different samples in a fast way. This concept can also be useful to be applied on other types of sensors and other sensing parameters.
Citation
Sherine Ismail Abd El‑Rahman, Hany Mahmoud Zamel, and Shimaa Ahmed Megahed Soliman, "Deep Learning Assisted Microwave Sensor for Dielectric Material Classification," Progress In Electromagnetics Research C, Vol. 159, 261-272, 2025.
doi:10.2528/PIERC25072203
References

1. Veselago, Viktor G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.

2. Sim, Man Seng, Kok Yeow You, Raimi Dewan, Fahmiruddin Esa, Mohd Rashidi Salim, Cheng Seong Khe, Stephanie Yen Nee Kew, and Fandi Hamid, "Microwave sensors loaded with metamaterial-inspired resonators for dielectric material characterization: A review," Sensors and Actuators A: Physical, Vol. 372, 115322, 2024.
doi:10.1016/j.sna.2024.115322

3. Muñoz-Enano, Jonathan, Paris Vélez, Marta Gil, and Ferran Martín, "Planar microwave resonant sensors: A review and recent developments," Applied Sciences, Vol. 10, No. 7, 2615, 2020.
doi:10.3390/app10072615

4. Alahnomi, Rammah Ali, Zahriladha Zakaria, Zulkalnain Mohd Yussof, Ayman Abdulhadi Althuwayb, Ammar Alhegazi, Hussein Alsariera, and Norhanani Abd Rahman, "Review of recent microwave planar resonator-based sensors: Techniques of complex permittivity extraction, applications, open challenges and future research directions," Sensors, Vol. 21, No. 7, 2267, 2021.
doi:10.3390/s21072267

5. Van Dijck, Maya, Maede Chavoshi, Hélène Ponsaerts, Tomislav Markovic, and Dominique Schreurs, "Complex permittivity extraction for ethanol-water mixtures characterization using artificial neural networks," 2023 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), 151-153, Leuven, Belgium, 2023.
doi:10.1109/IMBioC56839.2023.10304885

6. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

7. Caloz, Christophe and Tatsuo Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Inc., 2005.
doi:10.1002/0471754323

8. Brito, D. B., H. C. C. Fernandes, A. G. D'Assunção, and X. Begaud, "Complementary split ring resonator stop-band filter for UWB applications," 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011), 697-700, Natal, Brazil, 2011.
doi:10.1109/IMOC.2011.6169371

9. Govind, Greeshmaja and M. Jaleel Akhtar, "Design of an ELC resonator-based reusable RF microfluidic sensor for blood glucose estimation," Scientific Reports, Vol. 10, No. 1, 18842, 2020.
doi:10.1038/s41598-020-75716-z

10. Ebrahimi, Amir, James Scott, and Kamran Ghorbani, "Microwave reflective biosensor for glucose level detection in aqueous solutions," Sensors and Actuators A: Physical, Vol. 301, 111662, 2020.
doi:10.1016/j.sna.2019.111662

11. Beria, Yatish, Gouree Shankar Das, Akash Buragohain, and Bijay Bikash Chamuah, "Highly sensitive miniaturized octagonal DS-CSRR sensor for permittivity measurement of liquid samples," IEEE Transactions on Instrumentation and Measurement, Vol. 72, 1-9, 2023.
doi:10.1109/tim.2023.3307172

12. Javadizadeh, Saeed, Majid Badieirostami, and Mahmoud Shahabadi, "Ultrasensitive miniaturized planar microwave sensor for characterization of water-alcohol mixtures," Scientific Reports, Vol. 13, No. 1, 14144, 2023.
doi:10.1038/s41598-023-41035-2

13. Martín, Ferran, Paris Vélez, Jonathan Muñoz-Enano, and Lijuan Su, Planar Microwave Sensors, 1st Ed., John Wiley & Sons, Inc., 2023.
doi:10.1002/9781119811060

14. Zamel, Hany M., Sherine Ismail Abd El-Rahman, and Ahmed M. Attiya, "Metamaterial enhanced sensor for powder material classification," Scientific Reports, Vol. 14, No. 1, 21316, 2024.
doi:10.1038/s41598-024-71175-y

15. Navaei, Moein, Pejman Rezaei, and Sina Kiani, "Microwave split ring resonator sensor for determination of the fluids permittivity with measurement of human milk samples," Radio Science, Vol. 57, No. 7, 1-11, 2022.
doi:10.1029/2022RS007435

16. Jahangiri, Payam, M. Naser-Moghadasi, Behbod Ghalamkari, and Massoud Dousti, "A new planar microwave sensor for fat-measuring of meat based on SRR and periodic EBG structures," Sensors and Actuators A: Physical, Vol. 346, 113826, 2022.
doi:10.1016/j.sna.2022.113826

17. Kiani, Sina, Pejman Rezaei, Moein Navaei, and Mohammad Sadegh Abrishamian, "Microwave sensor for detection of solid material permittivity in single/multilayer samples with high quality factor," IEEE Sensors Journal, Vol. 18, No. 24, 9971-9977, 2018.
doi:10.1109/jsen.2018.2873544

18. Wu, Wen-Jing and Wen-Sheng Zhao, "A differential microwave sensor loaded with magnetic-LC resonators for simultaneous thickness and permittivity measurement of material under test by odd- and even-mode," IEEE Sensors Journal, Vol. 23, No. 12, 12808-12816, 2023.
doi:10.1109/JSEN.2023.3273541

19. Khalil, Muhammad Amir, Wong Hin Yong, Mohammad Tariqul Islam, Ahasanul Hoque, Md. Shabiul Islam, Cham Chin Leei, and Mohamed S. Soliman, "Double-negative metamaterial square enclosed QSSR for microwave sensing application in S-band with high sensitivity and Q-factor," Scientific Reports, Vol. 13, No. 1, 7373, 2023.
doi:10.1038/s41598-023-34514-z

20. Rabbani, Md. Golam, Mohammad Tariqul Islam, Ahasanul Hoque, Badariah Bais, Saleh Albadran, Md. Shabiul Islam, and Mohamed S. Soliman, "Orthogonal centre ring field optimization triple-band metamaterial absorber with sensing application," Engineering Science and Technology, An International Journal, Vol. 49, 101588, 2024.
doi:10.1016/j.jestch.2023.101588

21. Li, Maokun and Marco Salucci, Applications of Deep Learning in Electromagnetics: Teaching Maxwell's Equations to Machines, IET, 2023.
doi:10.1049/SBEW563E

22. Martínez-Ramón, Manel, Arjun Gupta, José Luis Rojo-Álvarez, Christos Christodoulou, and Kristof Cools, "Machine learning applications in electromagnetics and antenna array processing [book review]," IEEE Antennas and Propagation Magazine, Vol. 64, No. 4, 178-179, 2022.
doi:10.1109/MAP.2022.3178921

23. Christodoulou, C. and M. Georgiopoulos, Applications of Neural Networks in Electromagnetics, Artech House, 2000.

24. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

25. Islam, Mohammad Tariqul, Metamaterial for Microwave Applications, 1st Ed., CRC Press, 2023.
doi:10.1201/9781003358152

26. Marqués, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design --- Theory and experiments," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562

27. Marqués, Ricardo, Francisco Medina, and Rachid Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Physical Review B, Vol. 65, No. 14, 144440, 2002.
doi:10.1103/physrevb.65.144440

28. Ebrahimi, Amir, James Scott, and Kamran Ghorbani, "Transmission lines terminated with LC resonators for differential permittivity sensing," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 12, 1149-1151, 2018.
doi:10.1109/lmwc.2018.2875996

29. Haq, Tanveerul and Slawomir Koziel, "Novel complementary resonator for dielectric characterization of substrates based on permittivity and thickness," IEEE Sensors Journal, Vol. 24, No. 1, 195-203, 2024.
doi:10.1109/jsen.2023.3332124

30. Abdulkarim, Yadgar I., Lianwen Deng, Heng Luo, Shengxiang Huang, Muharrem Karaaslan, Olcay Altıntaş, Mehmet Bakır, Fahmi F. Muhammadsharif, Halgurd N. Awl, Cumali Sabah, and Khalid Saeed Lateef Al-Badri, "Design and study of a metamaterial based sensor for the application of liquid chemicals detection," Journal of Materials Research and Technology, Vol. 9, No. 5, 10291-10304, 2020.
doi:10.1016/j.jmrt.2020.07.034

31. Ye, Wei, Da-Wei Wang, Jing Wang, Gaofeng Wang, and Wen-Sheng Zhao, "An improved split-ring resonator-based sensor for microfluidic applications," Sensors, Vol. 22, No. 21, 8534, 2022.
doi:10.3390/s22218534

32. Islam, Md. Rashedul, Mohammad Tariqul Islam, M. Salaheldeen, Badariah Bais, Sami H. A. Almalki, Haitham Alsaif, and Md. Shabiul Islam, "Metamaterial sensor based on rectangular enclosed adjacent triple circle split ring resonator with good quality factor for microwave sensing application," Scientific Reports, Vol. 12, No. 1, 6792, 2022.
doi:10.1038/s41598-022-10729-4

33. Galindo-Romera, Gabriel, Francisco Javier Herraiz-Martínez, Marta Gil, José Juan Martínez-Martínez, and Daniel Segovia-Vargas, "Submersible printed split-ring resonator-based sensor for thin-film detection and permittivity characterization," IEEE Sensors Journal, Vol. 16, No. 10, 3587-3596, 2016.
doi:10.1109/JSEN.2016.2538086

34. Pawde, Sanyatjeet and Nisha Gupta, "Microwave sensors for metal conductivity measurement," Microwave Review, Vol. 30, No. 1, 16-22, 2024.
doi:10.18485/mtts_mr.2024.30.1.3

35. Qian, Boyang, Liang Mou, Li Wu, Zelong Xiao, Taiyang Hu, and Jinwei Jiang, "A direction-sensitive microwave sensor for metal crack detection," Applied Sciences, Vol. 12, No. 18, 9045, 2022.
doi:10.3390/app12189045