Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-08-26
Bandpass Type Negative Group Delay Design of CMOS RC-Network Integrated Circuit
By
Progress In Electromagnetics Research C, Vol. 159, 79-90, 2025
Abstract
Nowadays, microelectronic integrated circuit (IC) design constitutes the biggest challenge of negative group delay (NGD) electronic engineering research. Bandpass (BP) type NGD circuits are generally designed with resonant and not-integrable inductive large size network-based topology. However, BP-NGD circuit integrability is delimited by the inductor design. A design solution for fully resistive-capacitive (RC) network-based BP-type IC in 130-nm CMOS technology is the purpose of the present research work. The theory expressing the design equations of RC-network based BP-NGD circuit is developed. The design feasibility is verified with a proof-of-concept (POC) represented by a 130-nm CMOS RC-network passive IC with 0.68 mm × 0.72 mm physical size simulated by Cadence®. The obtained results of S-parameters confirm the BP-NGD behavior of the CMOS IC POC with 21.9-MHz NGD center frequency and -0.99-ns NGD value over 68-MHz NGD bandwidth. The BP-NGD characterization results are in excellent agreement with the theoretical model. The robustness of 130-nm CMOS BP-NGD RC passive IC is explored by 2000 trials Monte Carlo statistical analysis with respect to the uncertainty of component parameters.
Citation
Long Wang, Mathieu Guerin, Sonia Moussa, Ali Hamada Damien Fakra, Fayrouz Haddad, Fayu Wan, Lagouge Tartibu, Wenceslas Rahajandraibe, and Blaise Ravelo, "Bandpass Type Negative Group Delay Design of CMOS RC-Network Integrated Circuit," Progress In Electromagnetics Research C, Vol. 159, 79-90, 2025.
doi:10.2528/PIERC25072803
References

1. Gu, Taochen, Jiahui Chen, Blaise Ravelo, Fayu Wan, Vladimir Mordachev, and Qizheng Ji, "Quad-band NGD investigation on crossed resonator interconnect structure," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 12, 4789-4793, Dec. 2022.
doi:10.1109/tcsii.2022.3192288

2. Ji, Qizheng, Taochen Gu, Zhiliang Gao, Ming Yang, Yafei Yuan, Hongyu Du, Fayu Wan, Nour Mohammad Murad, Glauco Fontgalland, Hugerles S. Silva, and Blaise Ravelo, "CSRR DGS-based bandpass negative group delay circuit design," IEEE Access, Vol. 11, 20309-20318, 2023.
doi:10.1109/access.2023.3249968

3. Ravelo, Blaise, Alexandre Douyere, Yang Liu, Wenceslas Rahajandraibe, Fayu Wan, George Chan, and Mathieu Guerin, "Fully microstrip three-port circuit bandpass NGD design and test," IEEE Design & Test, Vol. 40, No. 1, 96-104, Feb. 2023.
doi:10.1109/MDAT.2022.3164337

4. Zhu, Minning and Chung-Tse Michael Wu, "Reconfigurable non-foster elements and squint-free beamforming networks using active transversal filter-based negative group delay circuit," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 1, 222-231, Jan. 2022.
doi:10.1109/tmtt.2021.3074577

5. Zhang, Tiedi and Tao Yang, "A novel fully reconfigurable non foster capacitance using distributed negative group delay networks," IEEE Access, Vol. 7, 92768-92777, 2019.

6. Zhang, Tiedi, Chung-Tse Michael Wu, and Ruimin Xu, "High Q series negative capacitor using negative group delay circuit based on a stepped-impedance distributed amplifier," IEICE Electronics Express, Vol. 14, No. 7, 20170088, 2017.
doi:10.1587/elex.14.20170088

7. Shao, Te, Zhongbao Wang, Shaojun Fang, Hongmei Liu, and Zhi Ning Chen, "A full-passband linear-phase band-pass filter equalized with negative group delay circuits," IEEE Access, Vol. 8, 43336-43343, 2020.
doi:10.1109/access.2020.2977100

8. Xiao, Jian-Kang, Qiu-Fen Wang, and Jian-Guo Ma, "Negative group delay circuits and applications: Feedforward amplifiers, phased-array antennas, constant phase shifters, non-foster elements, interconnection equalization, and power dividers," IEEE Microwave Magazine, Vol. 22, No. 2, 16-32, Feb. 2021.
doi:10.1109/mmm.2020.3035862

9. Ravelo, Blaise, Mathieu Guerin, Jaroslav Frnda, Lala Rajaoarisoa, and Wenceslas Rahajandraibe, "Thermal wave variation anticipation under minute scale time-advance with low-pass NGD Digital Circuit," IEEE Access, Vol. 10, 127654-127666, 2022.
doi:10.1109/access.2022.3226514

10. Ravelo, Blaise, Mathieu Guerin, Wenceslas Rahajandraibe, and Lala Rajaoarisoa, "All-pass NGD FIR original study for sensor failure detection application," IEEE Transactions on Industrial Electronics, Vol. 70, No. 9, 9561-9571, Sep. 2023.
doi:10.1109/tie.2022.3213904

11. Gu, T., F. Wan, B. Ravelo, P. Thakur, A. Thakur, F. Haddad, M. Guerin, and W. Rahajandraibe, "BP-NGD signal integrity application for RLC-cable parasitic dispersion reduction," 2023 Joint Asia-Pacific International Symposium on Electromagnetic Compatibility and International Conference on ElectroMagnetic Interference & Compatibility (APEMC/INCEMIC), 1-3, Bengaluru, India, 2023.
doi:10.1109/APEMC57782.2023.10217469

12. Wan, Fayu, Xiang Miao, Blaise Ravelo, Qingyun Yuan, Jing Cheng, Qizheng Ji, and Junxiang Ge, "Design of multi-scale negative group delay circuit for sensors signal time-delay cancellation," IEEE Sensors Journal, Vol. 19, No. 19, 8951-8962, 2019.

13. Ravelo, Blaise, Glauco Fontgalland, Hugerles S. Silva, Jamel Nebhen, Wenceslas Rahajandraibe, Mathieu Guerin, George Chan, and Fayu Wan, "Original application of stop-band negative group delay microwave passive circuit for two-step stair phase shifter designing," IEEE Access, Vol. 10, 1493-1508, 2022.
doi:10.1109/access.2021.3138371

14. Au, NgocDuc and Chulhun Seo, "Novel design of a 2.1-2.9 GHz negative capacitance using a passive non-Foster circuit," IEICE Electronics Express, Vol. 14, No. 1, 20160955, 2017.
doi:10.1587/elex.13.20160955

15. Zhang, Tiedi, Ruimin Xu, and Chung-Tse Michael Wu, "Unconditionally stable non-foster element using active transversal-filter-based negative group delay circuit," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 10, 921-923, 2017.
doi:10.1109/lmwc.2017.2745487

16. Mitchell, Morgan W. and Raymond Y. Chiao, "Causality and negative group delays in a simple bandpass amplifier," American Journal of Physics, Vol. 66, No. 1, 14-19, 1998.
doi:10.1119/1.18813

17. Mitchell, Morgan W. and Raymond Y. Chiao, "Negative group delay and “fronts” in a causal system: An experiment with very low frequency bandpass amplifiers," Physics Letters A, Vol. 230, No. 3-4, 133-138, 1997.
doi:10.1016/s0375-9601(97)00244-2

18. Ravelo, Blaise, "Similitude between the NGD function and filter gain behaviours," International Journal of Circuit Theory and Applications, Vol. 42, No. 10, 1016-1032, 2014.
doi:10.1002/cta.1902

19. Ravelo, B., "On low-pass, high-pass, bandpass, and stop-band NGD RF passive circuits," URSI Radio Science Bulletin, Vol. 2017, No. 363, 10-27, Dec. 2017.
doi:10.23919/ursirsb.2017.8409424

20. Ravelo, Blaise, Mathieu Guerin, Lala Rajaoarisoa, and Wenceslas Rahajandraibe, "Low-pass NGD digital circuit application for real-time greenhouse temperature prediction," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 70, No. 9, 3709-3713, Sep. 2023.
doi:10.1109/tcsii.2023.3276389

21. Hwang, Myeong-Eun, Seong-Ook Jung, and Kaushik Roy, "Slope interconnect effort: Gate-interconnect interdependent delay modeling for early CMOS circuit simulation," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 56, No. 7, 1428-1441, 2009.
doi:10.1109/tcsi.2008.2006217

22. Raveloa, B., "Delay modeling of high-speed distributed interconnect for the signal integrity prediction," The European Physical Journal --- Applied Physics, Vol. 57, No. 3, 31002, 2012.
doi:10.1051/epjap/2012110374

23. Wan, Fayu, Taochen Gu, Binhong Li, Bo Li, Wenceslas Rahajandraibe, Mathieu Guerin, Sébastien Lalléchère, and Blaise Ravelo, "Design and experimentation of inductorless low-pass NGD integrated circuit in 180-nm CMOS technology," IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, Vol. 41, No. 11, 4965-4974, Nov. 2022.
doi:10.1109/TCAD.2021.3136982

24. Guerin, Mathieu, Wenceslas Rahajandraibe, Glauco Fontgalland, Hugerles S. Silva, George Chan, Fayu Wan, Preeti Thakur, Atul Thakur, Jaroslav Frnda, and Blaise Ravelo, "Theory and original design of resistive-inductive network high-pass negative group delay integrated circuit in 130-nm CMOS technology," IEEE Access, Vol. 10, 27147-27161, 2022.
doi:10.1109/access.2022.3157381

25. Ravelo, Blaise, Mathieu Guerin, Jaroslav Frnda, Frank Elliot Sahoa, Glauco Fontgalland, Hugerles S. Silva, Samuel Ngoho, Fayrouz Haddad, and Wenceslas Rahajandraibe, "Design method of constant phase-shifter microwave passive integrated circuit in 130-nm BiCMOS technology with bandpass-type negative group delay," IEEE Access, Vol. 10, 93084-93103, 2022.
doi:10.1109/access.2022.3201137

26. He, Lai, Wei Li, Jintao Hu, and Yuanyuan Xu, "A 24-GHz source-degenerated tunable delay shifter with negative group delay compensation," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 8, 687-689, Aug. 2018.
doi:10.1109/lmwc.2018.2843290

27. Wu, Yongle, Handing Wang, Zheng Zhuang, Yuanan Liu, Quan Xue, and Ahmed A. Kishk, "A novel arbitrary terminated unequal coupler with bandwidth-enhanced positive and negative group delay characteristics," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 5, 2170-2184, May 2018.
doi:10.1109/tmtt.2018.2809516

28. Wan, Fayu, Taochen Gu, Sébastien Lalléchère, Preeti Thakur, Atul Thakur, Wenceslas Rahajandraibe, and Blaise Ravelo, "Design and test of innovative three-couplers-based bandpass negative group delay active circuit," IEEE Design & Test, Vol. 39, No. 1, 57-66, Feb. 2022.
doi:10.1109/MDAT.2021.3079178

29. Chaudhary, Girdhari, Phirun Kim, Jaeyeon Kim, Yongchae Jeong, and Jongsik Lim, "Coupled line negative group delay circuits with very low signal attenuation and multiple-poles characteristics," 2014 44th European Microwave Conference, 25-28, Rome, Italy, 2014.
doi:10.1109/EuMC.2014.6986360

30. Kandic, Miodrag and Greg E. Bridges, "Maximally flat negative group delay prototype filter based on capped reciprocal transfer function of classical bessel filter," Progress In Electromagnetics Research B, Vol. 110, 91-105, 2025.
doi:10.2528/pierb24121308

31. Wan, Fayu, Hongchuan Jia, and Blaise Ravelo, "Bandpass NGD analysis of PCB folded Li-shape trace," IEEE Transactions on Signal and Power Integrity, Vol. 3, 56-66, 2024.
doi:10.1109/tsipi.2024.3391212

32. Ravelo, Blaise, Fayu Wan, Jamel Nebhen, George Chan, Wenceslas Rahajandraibe, and Sébastien Lalléchère, "Bandpass NGD TAN of symmetric H-tree with resistorless lumped-network," IEEE Access, Vol. 9, 41383-41396, 2021.
doi:10.1109/access.2021.3065828

33. Wang, Zhongbao, Yuwei Meng, Shaojun Fang, and Hongmei Liu, "Wideband flat negative group delay circuit with improved signal attenuation," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 8, 3371-3375, Aug. 2022.
doi:10.1109/tcsii.2022.3156537

34. Shao, Te, Zhongbao Wang, Shaojun Fang, Hongmei Liu, and Shiqiang Fu, "A compact transmission-line self-matched negative group delay microwave circuit," IEEE Access, Vol. 5, 22836-22843, 2017.
doi:10.1109/access.2017.2761890

35. Ravelo, Blaise, Samuel Ngoho, Glauco Fontgalland, Lala Rajaoarisoa, Wenceslas Rahajandraibe, Rémy Vauché, Zhifei Xu, Fayu Wan, Junxiang Ge, and Sébastien Lalléchère, "Original theory of NGD low pass-high pass composite function for designing inductorless BP NGD lumped circuit," IEEE Access, Vol. 8, 192951-192964, 2020.
doi:10.1109/ACCESS.2020.3033038