Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-01
Research on Microstrip Array Antennas for Microwave DE-Icing of Wind Turbine Blades
By
Progress In Electromagnetics Research C, Vol. 164, 89-95, 2026
Abstract
Wind turbine blades are prone to icing in low-temperature environments, which affects the efficiency and safety of wind power generation. Microwave de-icing technology, with its high efficiency, non-contact, and rapid response characteristics, has become an important method for addressing the issue of blade icing. This paper focuses on the antenna design for a microwave de-icing system for wind turbine blades. Based on microstrip patch antennas, a low-side lobe, a high-gain array antenna was designed, operating at a frequency of 2.45 GHz with a maximum gain of 13.9 dB, with side lobe levels of -22.3 dB. An experimental system was established, and an infrared thermal imager was used to measure heating results, verifying temperature increases under different absorptive materials, heating times, heating powers, and radiation distances, laying the foundation for de-icing applications.
Citation
Yuchen Xia, Ning Liu, Zhengqing Yang, Yunhong Liu, Xian-Jun Sheng, Dongdong Zhang, Guangwen Jiang, and Xin Li, "Research on Microstrip Array Antennas for Microwave DE-Icing of Wind Turbine Blades," Progress In Electromagnetics Research C, Vol. 164, 89-95, 2026.
doi:10.2528/PIERC25081902
References

1. Tong, Guoqiang, Yan Li, Kotaro Tagawa, and Fang Feng, "Effects of blade airfoil chord length and rotor diameter on aerodynamic performance of straight-bladed vertical axis wind turbines by numerical simulation," Energy, Vol. 265, 126325, 2023.
doi:10.1016/j.energy.2022.126325        Google Scholar

2. Xu, Zhi, Ting Zhang, Yangyang Lian, and Fang Feng, "A parametric study on the effect of liquid water content and droplet median volume diameter on the ice distribution and anti-icing heat estimation of a wind turbine airfoil," Results in Engineering, Vol. 22, 102121, 2024.
doi:10.1016/j.rineng.2024.102121        Google Scholar

3. Meng, Min, Xiangyuan Zheng, Zhonghui Wu, Hanyu Hong, and Lei Zhang, "Research and application of microwave microstrip transmission line-based icing detection methods for wind turbine blades," Sensors, Vol. 25, No. 3, 613, 2025.
doi:10.3390/s25030613        Google Scholar

4. Li, Yan, Ce Sun, Yu Jiang, Xian Yi, Zhi Xu, and Wenfeng Guo, "Temperature effect on icing distribution near blade tip of large-scale horizontal-axis wind turbine by numerical simulation," Advances in Mechanical Engineering, Vol. 10, No. 11, 1687814018812247, 2018.
doi:10.1177/1687814018812247        Google Scholar

5. Stoyanov, D. B., J. D. Nixon, and H. Sarlak, "Analysis of derating and anti-icing strategies for wind turbines in cold climates," Applied Energy, Vol. 288, 116610, 2021.
doi:10.1016/j.apenergy.2021.116610        Google Scholar

6. Wallenius, Tomas and Ville Lehtomäki, "Overview of cold climate wind energy: Challenges, solutions, and future needs," Wiley Interdisciplinary Reviews: Energy and Environment, Vol. 5, No. 2, 128-135, 2016.
doi:10.1002/wene.170        Google Scholar

7. Wang, Yaling, Zhiwei Huang, Robert S. Gurney, and Dan Liu, "Superhydrophobic and photocatalytic PDMS/TiO2 coatings with environmental stability and multifunctionality," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 561, 101-108, 2019.
doi:10.1016/j.colsurfa.2018.10.054        Google Scholar

8. Xu, Ke, Jianlin Hu, Xingliang Jiang, Wei Meng, Binhuan Lan, and Lichun Shu, "Anti-icing performance of hydrophobic silicone-acrylate resin coatings on wind blades," Coatings, Vol. 8, No. 4, 151, 2018.
doi:10.3390/coatings8040151        Google Scholar

9. Peng, Chaoyi, Suli Xing, Zhiqing Yuan, Jiayu Xiao, Chunqi Wang, and Jingcheng Zeng, "Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade," Applied Surface Science, Vol. 259, 764-768, 2012.
doi:10.1016/j.apsusc.2012.07.118        Google Scholar

10. Xie, Teng, Jiankai Dong, Haowen Chen, Yiqiang Jiang, and Yang Yao, "Experimental investigation of deicing characteristics using hot air as heat source," Applied Thermal Engineering, Vol. 107, 681-688, 2016.
doi:10.1016/j.applthermaleng.2016.05.162        Google Scholar

11. Li, Xiaojuan, Haodong Chi, Yan Li, Zhi Xu, Wenfeng Guo, and Fang Feng, "An experimental study on blade surface de-icing characteristics for wind turbines in rime ice condition by electro-thermal heating," Coatings, Vol. 14, No. 1, 94, 2024.
doi:10.3390/coatings14010094        Google Scholar

12. Li, Yan, He Shen, and Wenfeng Guo, "Simulation and experimental study on the ultrasonic micro-vibration de-icing method for wind turbine blades," Energies, Vol. 14, No. 24, 8246, 2021.
doi:10.3390/en14248246        Google Scholar

13. Zhang, Zhijin, Hang Zhang, Xu Zhang, Qin Hu, and Xingliang Jiang, "A review of wind turbine icing and anti/de-icing technologies," Energies, Vol. 17, No. 12, 2805, 2024.
doi:10.3390/en17122805        Google Scholar

14. Madi, Ezieddin, Kevin Pope, Weimin Huang, and Tariq Iqbal, "A review of integrating ice detection and mitigation for wind turbine blades," Renewable and Sustainable Energy Reviews, Vol. 103, 269-281, 2019.
doi:10.1016/j.rser.2018.12.019        Google Scholar

15. Daniliuk, Vladislav, Yuanming Xu, Ruobing Liu, Tianpeng He, and Xi Wang, "Ultrasonic de-icing of wind turbine blades: Performance comparison of perspective transducers," Renewable Energy, Vol. 145, 2005-2018, 2020.
doi:10.1016/j.renene.2019.07.102        Google Scholar

16. Huang, Qinqin, Zhengqing Yang, Ning Liu, Dongdong Zhang, Guangwen Jiang, Hailong Zhang, Haiyang Zhu, and Xiangyan Liu, "Research on the microwave heating and de-icing performance of various composite coatings," Physica Scripta, Vol. 100, No. 3, 035550, Feb. 2025.
doi:10.1088/1402-4896/adb341        Google Scholar

17. Petrenko, Victor F., Charles R. Sullivan, Valeri Kozlyuk, Fedor V. Petrenko, and Victor Veerasamy, "Pulse electro-thermal de-icer (PETD)," Cold Regions Science and Technology, Vol. 65, No. 1, 70-78, 2011.
doi:10.1016/j.coldregions.2010.06.002        Google Scholar

18. Rawat, Saurabh, Rahul Samyal, Raman Bedi, and Ashok Kumar Bagha, "Comparative performance of various susceptor materials and vertical cavity shapes for selective microwave hybrid heating (SMHH)," Physica Scripta, Vol. 97, No. 12, 125704, Nov. 2022.
doi:10.1088/1402-4896/ac9e7d        Google Scholar

19. Singh, Gurbhej, Amit Bansal, Hitesh Vasudev, and Vishwesh Mishra, "Sliding wear study of the Inconel-625 clad deposits by microwave heating on SS-304," Physica Scripta, Vol. 99, No. 6, 065503, May 2024.
doi:10.1088/1402-4896/ad4187        Google Scholar

20. Luo, Ruiliang, Xu Chen, and Jinyu Guo, "Design of deicing device for wind turbine blade based on microwave and ultrasonic wave," Journal of Physics: Conference Series, Vol. 1748, No. 6, 062018, 2021.
doi:10.1088/1742-6596/1748/6/062018

21. Yang, Yang, Zhipeng Fan, Tao Hong, Maoshun Chen, Xiangwei Tang, Jianbo He, Xing Chen, Changjun Liu, Huacheng Zhu, and Kama Huang, "Design of microwave directional heating system based on phased-array antenna," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 11, 4896-4904, 2020.
doi:10.1109/tmtt.2020.3002831        Google Scholar

22. Li, Chen Nan, Xian Qi Lin, Dong Yi Liu, and Zhang Wen, "Regionally tunable microwave heating technology using time-frequency-space domain synthesis modulation method," IEEE Transactions on Industrial Electronics, Vol. 68, No. 10, 10240-10247, 2021.
doi:10.1109/tie.2020.3026295        Google Scholar

23. Vencels, Juris, Mihails Birjukovs, Juhani Kataja, and Peter Råback, "Microwave heating of water in a rectangular waveguide: Validating EOF-Library against COMSOL multiphysics and existing numerical studies," Case Studies in Thermal Engineering, Vol. 15, 100530, 2019.
doi:10.1016/j.csite.2019.100530        Google Scholar

24. Fan, Shen, Yuting Wang, Hanxiang Wang, Xin Zhang, Yue Zhu, Jiaqi Che, Bingyu Sun, Ning Yang, Chunpeng Yang, Haolei Xu, and Chengguo Li, "Enhancing gas production from methane hydrate decomposition by microwave heating-induced: Modeling and experimental validation," Energy, Vol. 322, 135566, 2025.
doi:10.1016/j.energy.2025.135566        Google Scholar

25. Hong, Wen, Peng Xiao, Heng Luo, and Zhuan Li, "Microwave axial dielectric properties of carbon fiber," Scientific Reports, Vol. 5, No. 1, 14927, 2015.
doi:10.1038/srep14927        Google Scholar

26. Artemov, Vasily, The Electrodynamics of Water and Ice, Vol. 124, Springer, 2021.
doi:10.1007/978-3-030-72424-5

27. El Khaled, D., N. Novas, J. A. Gazquez, and F. Manzano-Agugliaro, "Microwave dielectric heating: Applications on metals processing," Renewable and Sustainable Energy Reviews, Vol. 82, 2880-2892, 2018.
doi:10.1016/j.rser.2017.10.043        Google Scholar

28. Zhao, Yanli, Yan Chen, Ling Tong, Liang Zhong, and Mingquan Jia, "The measurement on the dielectric properties of fresh-water ice with rectangular waveguide at 2.6 GHz-3.9 GHz," IGARSS 2008 --- 2008 IEEE International Geoscience and Remote Sensing Symposium, IV-1165-IV-1168, Boston, MA, USA, 2008.
doi:10.1109/IGARSS.2008.4779935

29. Lee, Jisu, Seungyong Park, Junmo Choi, Woocheon Park, and Kyung-Young Jung, "Compact series-fed microstrip patch array antenna in the 60 GHz band," AEU --- International Journal of Electronics and Communications, Vol. 187, 155513, 2024.
doi:10.1016/j.aeue.2024.155513        Google Scholar

30. Jung, Jaewoong, Yunsik Park, and Jongin Ryu, "Enhanced phase coherence in series-fed patch array antenna: A design method for uniform element spacing with low sidelobe levels," Microwave and Optical Technology Letters, Vol. 66, No. 12, e70066, 2024.
doi:10.1002/mop.70066        Google Scholar

31. Chen, Qian, Songlin Yan, Xinyue Guo, Wei Wang, Zhixiang Huang, Lixia Yang, Yingsong Li, and Xianling Liang, "A low sidelobe 77 GHz centre‐fed microstrip patch array antenna," IET Microwaves, Antennas & Propagation, Vol. 17, No. 11, 887-896, 2023.
doi:10.1049/mia2.12408        Google Scholar

32. Liu, Jingping, Ning Mu, Fang Lv, Huichang Zhao, Qian Wang, and Ying Wang, "Low side lobe cylinder conformai omnidirectional millimeter wave microstrip antenna design," 2016 46th European Microwave Conference (EuMC), 29-32, London, UK, 2016.
doi:10.1109/EuMC.2016.7824269

33. Santos, T., M. A. Valente, J. Monteiro, J. Sousa, and L. C. Costa, "Electromagnetic and thermal history during microwave heating," Applied Thermal Engineering, Vol. 31, No. 16, 3255-3261, 2011.
doi:10.1016/j.applthermaleng.2011.06.006        Google Scholar