1. Jha, Abhishek Kumar and Mohammad Jaleel Akhtar, "An improved rectangular cavity approach for measurement of complex permeability of materials," IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 4, 995-1003, 2015.
doi:10.1109/tim.2014.2362433 Google Scholar
2. Zinal, S. and G. Boeck, "Complex permittivity measurements using TE/sub 11p/modes in circular cylindrical cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, 1870-1874, 2005.
doi:10.1109/tmtt.2005.848094 Google Scholar
3. Seo, Il Sung, Woo Seok Chin, and Dai Gil Lee, "Characterization of electromagnetic properties of polymeric composite materials with free space method," Composite Structures, Vol. 66, No. 1-4, 533-542, 2004.
doi:10.1016/j.compstruct.2004.04.076 Google Scholar
4. Sheen, Jyh, "Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques," Measurement Science and Technology, Vol. 20, No. 4, 042001, Jan. 2009.
doi:10.1088/0957-0233/20/4/042001 Google Scholar
5. Pozar, David M., Microwave Engineering: Theory and Techniques, John Wiley & Sons, 2021.
6. Kim, Chul-Ki, Laxmikant Minz, and Seong-Ook Park, "Improved measurement method of material properties using continuous cavity perturbation without relocation," IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 8, 5702-5716, 2020.
doi:10.1109/tim.2020.2966358 Google Scholar
7. Jha, Abhishek Kumar, Nilesh Kumar Tiwari, and M. Jaleel Akhtar, "Accurate microwave cavity sensing technique for dielectric testing of arbitrary length samples," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-10, 2021.
doi:10.1109/tim.2021.3073438 Google Scholar
8. Kraszewski, A. W. and S. O. Nelson, "Observations on resonant cavity perturbation by dielectric objects," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 1, 151-155, Jan. 1992.
doi:10.1109/22.108334 Google Scholar
9. Peng, Zhiwei, Jiann-Yang Hwang, and Matthew Andriese, "Maximum sample volume for permittivity measurements by cavity perturbation technique," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 2, 450-455, 2014.
doi:10.1109/tim.2013.2279496 Google Scholar
10. Parkash, A., J. K. Vaid, and A. Mansingh, "Measurement of dielectric parameters at microwave frequencies by cavity-perturbation technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 27, No. 9, 791-795, 1979.
doi:10.1109/tmtt.1979.1129731 Google Scholar
11. Ghorab, Khawla, Mohamed Lahdi Riabi, Rawdha Thabet, and Junwu Tao, "Improved sample volume in cylindrical perturbed cavity for permittivity calculation," 2023 22nd Mediterranean Microwave Symposium (MMS), 1-5, Sousse, Tunisia, 2023.
doi:10.1109/MMS59938.2023.10421389
12. Chen, D.-X., J. A. Brug, and R. B. Goldfarb, "Demagnetizing factors for cylinders," IEEE Transactions on Magnetics, Vol. 27, No. 4, 3601-3619, 1991.
doi:10.1109/20.102932 Google Scholar
13. Harrison, C., "Missile with attached umbilical cable as a receiving antenna," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 5, 587-588, 1963.
doi:10.1109/tap.1963.1138083 Google Scholar
14. Lin, Mi and Mohammed N. Afsar, "A new cavity perturbation technique for accurate measurement of dielectric parameters," 2006 IEEE MTT-S International Microwave Symposium Digest, 1630-1633, San Francisco, CA, USA, 2006.
doi:10.1109/MWSYM.2006.249650
15. Jones, Scott B. and Shmulik P. Friedman, "Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles," Water Resources Research, Vol. 36, No. 10, 2821-2833, 2000.
doi:10.1029/2000wr900198 Google Scholar
16. Chen, Du-Xing, E. Pardo, and A. Sanchez, "Demagnetizing factors of rectangular prisms and ellipsoids," IEEE Transactions on Magnetics, Vol. 38, No. 4, 1742-1752, 2002.
doi:10.1109/tmag.2002.1017766 Google Scholar
17. Venermo, Jukka and Ari Sihvola, "Dielectric polarizability of circular cylinder," Journal of Electrostatics, Vol. 63, No. 2, 101-117, 2005.
doi:10.1016/j.elstat.2004.09.001 Google Scholar
18. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Vol. 2, Pergamon Press Oxford, 1960.
doi:10.1016/B978-0-08-030275-1.50007-2
19. Polaert, Isabelle, Nassima Benamara, Junwu Tao, Tan-Hoa Vuong, Marc Ferrato, and Lionel Estel, "Dielectric properties measurement methods for solids of high permittivities under microwave frequencies and between 20 and 250 °C," Chemical Engineering and Processing: Process Intensification, Vol. 122, 339-345, 2017.
doi:10.1016/j.cep.2017.03.003 Google Scholar
20. Hutcheon, R. M., M. S. De Jong, F. P. Adams, P. G. Lucuta, J. E. McGregor, and L. Bahen, "RF and microwave dielectric measurements to 1400°C and dielectric loss mechanisms," MRS Online Proceedings Library (OPL), Vol. 269, 541, 1992.
doi:10.1557/proc-269-541 Google Scholar
21. Chatterjee, Anindita, Tanmay Basak, and K. G. Ayappa, "Analysis of microwave sintering of ceramics," AIChE Journal, Vol. 44, No. 10, 2302-2311, Oct. 1998.
doi:10.1002/aic.690441019 Google Scholar
22. Ghorab, K., R. Thabet, J. Tao, and M. L. Riabi, "Improvement of the perturbation technique in microwave characterization of lossy materials in a cylindrical cavity," 19th International Conference on Microwave and High Frequency Applications (AMPERE 2023), Cardiff, United Kingdom, 2023.
23. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
doi:10.1002/0470020466
24. Curtis, Alexander J., "Dielectric properties of polyamides: Polyhexamethylene adipamide and polyhexamethylene sebacamide," Journal of Research of the National Bureau of Standards. Section A, Physics and chemistry, Vol. 65A, No. 3, 185-196, 1961.
doi:10.6028/jres.065a.022 Google Scholar