Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-07
Calculation of the Permittivity of Lossy Dielectrics Using Cylindrical Cavity Perturbation Technique by Investing in Modified Model of Depolarizing Factor
By
Progress In Electromagnetics Research C, Vol. 164, 154-163, 2026
Abstract
To achieve accurate characterization of a dielectric sample, an improved approach to the cylindrical cavity perturbation technique is proposed, with particular emphasis on the depolarization factor. The problem arises from the depolarized field within the sample when its height is smaller than that of the cavity, and it depends on the sample's geometry and the orientation of the applied field lines. Two models are examined: the proposed model, based on the resolution of Maxwell's equations, and the ellipsoidal model refined through image theory. The objective is to enhance the accuracy of complex permittivity extraction for lossy dielectric materials. Standard low-loss and high-loss materials (Al2O3, Teflon, and SiC) with various shapes (rod, needle, disk and sphere) are analyzed using HFSS simulations and MATLAB computations. The maximum sample volume is also evaluated for different geometries and material types to ensure accurate permittivity estimation. Low-loss materials generally allow a larger sample volume than high-loss ones, and provide more consistent results for permittivity extraction. Experimental measurements were further performed on disk-shaped polyamide and ceramic samples, demonstrating that the proposed approach provides improved permittivity estimation, particularly for high-loss and disk-shaped dielectric materials.
Citation
Khawla Ghorab, Rawdha Thabet, Junwu Tao, Mohamed Lahdi Riabi, and Tan Hoa Vuong, "Calculation of the Permittivity of Lossy Dielectrics Using Cylindrical Cavity Perturbation Technique by Investing in Modified Model of Depolarizing Factor," Progress In Electromagnetics Research C, Vol. 164, 154-163, 2026.
doi:10.2528/PIERC25082004
References

1. Jha, Abhishek Kumar and Mohammad Jaleel Akhtar, "An improved rectangular cavity approach for measurement of complex permeability of materials," IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 4, 995-1003, 2015.
doi:10.1109/tim.2014.2362433        Google Scholar

2. Zinal, S. and G. Boeck, "Complex permittivity measurements using TE/sub 11p/modes in circular cylindrical cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, 1870-1874, 2005.
doi:10.1109/tmtt.2005.848094        Google Scholar

3. Seo, Il Sung, Woo Seok Chin, and Dai Gil Lee, "Characterization of electromagnetic properties of polymeric composite materials with free space method," Composite Structures, Vol. 66, No. 1-4, 533-542, 2004.
doi:10.1016/j.compstruct.2004.04.076        Google Scholar

4. Sheen, Jyh, "Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques," Measurement Science and Technology, Vol. 20, No. 4, 042001, Jan. 2009.
doi:10.1088/0957-0233/20/4/042001        Google Scholar

5. Pozar, David M., Microwave Engineering: Theory and Techniques, John Wiley & Sons, 2021.

6. Kim, Chul-Ki, Laxmikant Minz, and Seong-Ook Park, "Improved measurement method of material properties using continuous cavity perturbation without relocation," IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 8, 5702-5716, 2020.
doi:10.1109/tim.2020.2966358        Google Scholar

7. Jha, Abhishek Kumar, Nilesh Kumar Tiwari, and M. Jaleel Akhtar, "Accurate microwave cavity sensing technique for dielectric testing of arbitrary length samples," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-10, 2021.
doi:10.1109/tim.2021.3073438        Google Scholar

8. Kraszewski, A. W. and S. O. Nelson, "Observations on resonant cavity perturbation by dielectric objects," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 1, 151-155, Jan. 1992.
doi:10.1109/22.108334        Google Scholar

9. Peng, Zhiwei, Jiann-Yang Hwang, and Matthew Andriese, "Maximum sample volume for permittivity measurements by cavity perturbation technique," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 2, 450-455, 2014.
doi:10.1109/tim.2013.2279496        Google Scholar

10. Parkash, A., J. K. Vaid, and A. Mansingh, "Measurement of dielectric parameters at microwave frequencies by cavity-perturbation technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 27, No. 9, 791-795, 1979.
doi:10.1109/tmtt.1979.1129731        Google Scholar

11. Ghorab, Khawla, Mohamed Lahdi Riabi, Rawdha Thabet, and Junwu Tao, "Improved sample volume in cylindrical perturbed cavity for permittivity calculation," 2023 22nd Mediterranean Microwave Symposium (MMS), 1-5, Sousse, Tunisia, 2023.
doi:10.1109/MMS59938.2023.10421389

12. Chen, D.-X., J. A. Brug, and R. B. Goldfarb, "Demagnetizing factors for cylinders," IEEE Transactions on Magnetics, Vol. 27, No. 4, 3601-3619, 1991.
doi:10.1109/20.102932        Google Scholar

13. Harrison, C., "Missile with attached umbilical cable as a receiving antenna," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 5, 587-588, 1963.
doi:10.1109/tap.1963.1138083        Google Scholar

14. Lin, Mi and Mohammed N. Afsar, "A new cavity perturbation technique for accurate measurement of dielectric parameters," 2006 IEEE MTT-S International Microwave Symposium Digest, 1630-1633, San Francisco, CA, USA, 2006.
doi:10.1109/MWSYM.2006.249650

15. Jones, Scott B. and Shmulik P. Friedman, "Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles," Water Resources Research, Vol. 36, No. 10, 2821-2833, 2000.
doi:10.1029/2000wr900198        Google Scholar

16. Chen, Du-Xing, E. Pardo, and A. Sanchez, "Demagnetizing factors of rectangular prisms and ellipsoids," IEEE Transactions on Magnetics, Vol. 38, No. 4, 1742-1752, 2002.
doi:10.1109/tmag.2002.1017766        Google Scholar

17. Venermo, Jukka and Ari Sihvola, "Dielectric polarizability of circular cylinder," Journal of Electrostatics, Vol. 63, No. 2, 101-117, 2005.
doi:10.1016/j.elstat.2004.09.001        Google Scholar

18. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Vol. 2, Pergamon Press Oxford, 1960.
doi:10.1016/B978-0-08-030275-1.50007-2

19. Polaert, Isabelle, Nassima Benamara, Junwu Tao, Tan-Hoa Vuong, Marc Ferrato, and Lionel Estel, "Dielectric properties measurement methods for solids of high permittivities under microwave frequencies and between 20 and 250 °C," Chemical Engineering and Processing: Process Intensification, Vol. 122, 339-345, 2017.
doi:10.1016/j.cep.2017.03.003        Google Scholar

20. Hutcheon, R. M., M. S. De Jong, F. P. Adams, P. G. Lucuta, J. E. McGregor, and L. Bahen, "RF and microwave dielectric measurements to 1400°C and dielectric loss mechanisms," MRS Online Proceedings Library (OPL), Vol. 269, 541, 1992.
doi:10.1557/proc-269-541        Google Scholar

21. Chatterjee, Anindita, Tanmay Basak, and K. G. Ayappa, "Analysis of microwave sintering of ceramics," AIChE Journal, Vol. 44, No. 10, 2302-2311, Oct. 1998.
doi:10.1002/aic.690441019        Google Scholar

22. Ghorab, K., R. Thabet, J. Tao, and M. L. Riabi, "Improvement of the perturbation technique in microwave characterization of lossy materials in a cylindrical cavity," 19th International Conference on Microwave and High Frequency Applications (AMPERE 2023), Cardiff, United Kingdom, 2023.

23. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
doi:10.1002/0470020466

24. Curtis, Alexander J., "Dielectric properties of polyamides: Polyhexamethylene adipamide and polyhexamethylene sebacamide," Journal of Research of the National Bureau of Standards. Section A, Physics and chemistry, Vol. 65A, No. 3, 185-196, 1961.
doi:10.6028/jres.065a.022        Google Scholar