Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-06
Ultra-High Precision Power Metering Theory Based on Quantum Sensing and Miniaturized Device Design
By
Progress In Electromagnetics Research C, Vol. 164, 131-142, 2026
Abstract
With the development of smart grids and the high proportion of new energy integration, traditional electromagnetic power metering technology is gradually facing bottlenecks in terms of accuracy, anti-interference ability and frequency response range. This paper proposes a new ultra-high-precision power measurement method based on diamond nitrogen-vacancy (NV color center) quantum sensing. By establishing an electromagnetic field-spin quantum state coupling model, it achieves microtesla-level magnetic induction intensity measurement, and then reconstructs current, voltage and power parameters. At the theoretical level, the response function of the multi-pulse quantum manipulation sequence (XY8-K) to the power frequency alternating magnetic field was derived, and an adaptive quantum state locking algorithm was proposed to suppress environmental noise. At the device level, a multi-layer heterogeneous integrated miniaturized quantum sensing chip was designed, combining silicon-based photonic waveguides and microwave resonant structures. Its size was controlled at 8×8×2 mm3, and its power consumption was less than 200 mW. Experiments show that this system has a remarkable effect and provides technical support for the next generation of intelligent metering equipment.
Supplementary Information
Citation
Tong Wang, Jia Xi, Xin Li, Shengjie Mu, and Yusheng Cai, "Ultra-High Precision Power Metering Theory Based on Quantum Sensing and Miniaturized Device Design," Progress In Electromagnetics Research C, Vol. 164, 131-142, 2026.
doi:10.2528/PIERC25090301
References

1. Degen, C. L., F. Reinhard, and P. Cappellaro, "Quantum sensing," Reviews of Modern Physics, Vol. 89, No. 3, 035002, 2017.
doi:10.1103/revmodphys.89.035002        Google Scholar

2. Zou, Zhixing, Jiangbin Gong, and Weitao Chen, "Enhancing quantum metrology by quantum resonance dynamics," Physical Review Letters, Vol. 134, No. 23, 230802, 2025.
doi:10.1103/lkrt-lvng        Google Scholar

3. Deng, Xiaowei, Sai Li, Zi-Jie Chen, Zhongchu Ni, Yanyan Cai, Jiasheng Mai, Libo Zhang, Pan Zheng, Haifeng Yu, Chang-Ling Zou, et al., "Quantum-enhanced metrology with large Fock states," Nature Physics, Vol. 20, No. 12, 1874-1880, 2024.
doi:10.1038/s41567-024-02619-5        Google Scholar

4. Zuo, Xiaojie, Zhangguan Tang, Boyao Li, Xiaoyong Chen, and Jinghua Sun, "Quantum-empowered fiber sensing metrology," Photonics, Vol. 12, No. 8, 763, 2025.
doi:10.3390/photonics12080763

5. Fang, Hong-Hua, Xiao-Jie Wang, Xavier Marie, and Hong-Bo Sun, "Quantum sensing with optically accessible spin defects in van der Waals layered materials," Light: Science & Applications, Vol. 13, No. 1, 303, 2024.
doi:10.1038/s41377-024-01630-y        Google Scholar

6. Pezzè, Luca and Augusto Smerzi, "Advances in multiparameter quantum sensing and metrology," arxiv preprint arxiv:2502.17396, 2025.
doi:10.48550/arXiv.2502.17396        Google Scholar

7. Khalid, Uman, Muhammad Shohibul Ulum, Moe Z. Win, and Hyundong Shin, "Integrated satellite-ground variational quantum sensing networks," IEEE Communications Magazine, Vol. 62, No. 10, 20-27, 2024.
doi:10.1109/mcom.005.2300844        Google Scholar

8. Fu, Ming, Zicai Wang, Donglai Zhang, and Hua Zhang, "Research on miniaturized ultra-high voltage and high power supply," 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), 1-4, Beijing, China, 2020.
doi:10.1109/ichve49031.2020.9279662

9. Harano, Masayuki, Hiroki Kobayashi, Chiaki Yamaura, Kenta Ikeda, Koki Nakazawa, and Shozo Yoda, "Development of high-precision efficiency measuring device for high power motor drive systems," Energy Efficiency in Motor Systems: Proceedings of the 11th International Conference EEMODS'19, 271-284, Springer, Cham, 2021.
doi:10.1007/978-3-030-69799-0_21

10. Joshi, Surabhi, Sherman Hung, and Srikar Vengallatore, "Design strategies for controlling damping in micromechanical and nanomechanical resonators," EPJ Techniques and Instrumentation, Vol. 1, No. 1, 5, 2014.
doi:10.1186/epjti5        Google Scholar

11. Zhang, Hong-Fei, Jian-Min Wang, Qi-Jie Tang, Yi Feng, Dong-Xu Yang, Jie Chen, Sheng-Zhao Lin, and Jian Wang, "Design of ultra-low noise and low temperature usable power system for high-precision detectors," IEEE Transactions on Nuclear Science, Vol. 63, No. 6, 2757-2763, 2016.
doi:10.1109/tns.2016.2616167        Google Scholar

12. Wang, Jian-Min, Hong-Fei Zhang, Sheng-Zhao Lin, Yi Feng, Dong-Xu Yang, and Jian Wang, "Design of ultra-low noise power system for high-precision detectors," 2016 IEEE-NPSS Real Time Conference (RT), 1-2, Padua, Italy, 2016.
doi:10.1109/rtc.2016.7543073

13. Khosro Pour, Naser, François Krummenacher, and Maher Kayal, "An ultra-low power energy-efficient microsystem for hydrogen gas sensing applications," Analog Integrated Circuits and Signal Processing, Vol. 77, No. 2, 155-168, 2013.
doi:10.1007/s10470-013-0138-3        Google Scholar

14. Zhang, Aixiang, Shizhan Song, Chuanyong Wang, Jian Zhang, Kun Wang, and Liwei Li, "Research of an integrated high-voltage energy metering device," 2017 36th Chinese Control Conference (CCC), 7567-7570, Dalian, China, July 2017.
doi:10.23919/chicc.2017.8028551

15. Wang, P., Z. Yang, and Y. T. Zhong, "All-digital power metering system for the high voltage power system," Automation of Electric Power Systems, Vol. 33, No. 6, 70-72, 2009.        Google Scholar

16. Zhang, Fangqing, Jiang Guo, Fang Yuan, Yongjie Shi, Bingyuan Tan, and Dongfang Yao, "Research on intelligent verification system of high voltage electric energy metering device based on power cloud," Electronics, Vol. 12, No. 11, 2493, 2023.
doi:10.3390/electronics12112493        Google Scholar

17. Pan, Dawei, "Design of a kind of low-cost and high-precision power measuring device," Journal of Physics: Conference Series, Vol. 1622, No. 1, 012103, 2020.
doi:10.1088/1742-6596/1622/1/012103

18. Meng, Jing, Lei Song, Jingfen Bai, Wei Cen, Yongxian Duan, and Chunguang Lu, "Research on an integrated dual mode DC energy metering device and metering method," 2022 International Conference on Power Energy Systems and Applications (ICoPESA), 138-143, Singapore, 2022.
doi:10.1109/icopesa54515.2022.9754393

19. Zhao, Yong, Ya-Nan Zhang, Ri-Qing Lv, and Jin Li, "Electric field sensor based on photonic crystal cavity with liquid crystal infiltration," Journal of Lightwave Technology, Vol. 35, No. 16, 3440-3446, 2017.
doi:10.1109/jlt.2016.2576500        Google Scholar

20. White, Alexander D., Geun Ho Ahn, Richard Luhtaru, Joel Guo, Theodore J. Morin, Abhi Saxena, Lin Chang, Arka Majumdar, Kasper Van Gasse, John E. Bowers, and Jelena Vučković, "Unified laser stabilization and isolation on a silicon chip," Nature Photonics, Vol. 18, No. 12, 1305-1311, 2024.
doi:10.1038/s41566-024-01539-3        Google Scholar

21. An, Si-Han, Shi-Yu Ge, Wen-Tao Lu, Guo-Bin Chen, Sheng-Kai Xia, Ai-Qing Chen, Cheng-Kun Wang, Lin-Yan Yu, Zhi-Qiang Zhang, Yang Wang, et al., "Micron-resolved quantum precision measurement of magnetic field at the Tesla level," Chinese Physics B, Vol. 33, No. 12, 120305, 2024.
doi:10.1088/1674-1056/ad7e9b        Google Scholar

22. Chattaraj, Tirthaprasad, "Numerical studies on correlations in dynamics and localization of two interacting particles in lattices," arxiv preprint arxiv:1809.09982, 2018.
doi:10.48550/arXiv.1809.09982        Google Scholar

23. Zhu, Yuchun, Elena Losero, Christophe Galland, and Valentin Goblot, "Simulation of ODMR spectra from nitrogen-vacancy ensembles in diamond for electric field sensing," arxiv preprint arxiv:2301.04106, 2023.
doi:10.48550/arXiv.2301.04106        Google Scholar

24. Taylor, J. M., P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, "High-sensitivity diamond magnetometer with nanoscale resolution," Nature Physics, Vol. 4, 810-816, 2008.
doi:10.1038/nphys1075

25. Biercuk, M. J., A. C. Doherty, and H. Uys, "Dynamical decoupling sequence construction as a filter-design problem," Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 44, No. 15, 154002, 2011.
doi:10.1088/0953-4075/44/15/154002        Google Scholar

26. Barry, John F., Jennifer M. Schloss, Erik Bauch, Matthew J. Turner, Connor A. Hart, Linh M. Pham, and Ronald L. Walsworth, "Sensitivity optimization for NV-diamond magnetometry," Reviews of Modern Physics, Vol. 92, No. 1, 015004, 2020.
doi:10.1103/revmodphys.92.015004        Google Scholar

27. Everaert, Katrijn, Saipriya Satyajit, Jiashen Tang, Zechuan Yin, Xiechen Zheng, Jner Tzern Oon, Connor A. Hart, John W. Blanchard, and Ronald L. Walsworth, "AC magnetometry in the strong drive regime with NV centers in diamond," arxiv preprint arxiv:2510.05471, 2025.
doi:10.48550/arXiv.2510.05471        Google Scholar

28. Pozar, David M., Microwave Engineering: Theory and Techniques, John Wiley & Sons, 2021.

29. Mizuno, Kosuke, Hitoshi Ishiwata, Yuta Masuyama, Takayuki Iwasaki, and Mutsuko Hatano, "Simultaneous wide-field imaging of phase and magnitude of AC magnetic signal using diamond quantum magnetometry," Scientific Reports, Vol. 10, No. 1, 11611, 2020.
doi:10.1038/s41598-020-68404-5        Google Scholar

30. Carr, H. Y. and E. M. Purcell, "Effects of diffusion on free precession in nuclear magnetic resonance experiments," Physical Review, Vol. 94, No. 3, 630, 1954.
doi:10.1103/physrev.94.630        Google Scholar

31. Kalman, R. E., "A new approach to linear filtering and prediction problems," Journal of Basic Engineering, Vol. 82, No. 1, 35-45, 1960.
doi:10.1115/1.3662552        Google Scholar

32. Maybeck, Peter S., Stochastic Models, Estimation, and Control, Vol. 3, Academic Press, 1982.
doi:10.1109/tsmc.1980.4308494

33. ISO Guide to the Expression of Uncertainty in Measurement, AENOR, Madrid, Spain, 1993.

34. Rubinas, O. R., V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, V. N. Sorokin, A. N. Smolyaninov, V. G. Vins, A. P. Yelisseyev, and A. V. Akimov, "Spin properties of NV centers in high-pressure, high-temperature grown diamond," Journal of Physics Communications, Vol. 2, No. 11, 115003, 2018.
doi:10.1088/2399-6528/aae992        Google Scholar

35. Acosta, V. M., E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, "Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond," Physical Review Letters, Vol. 104, No. 7, 070801, 2010.
doi:10.1103/physrevlett.104.070801        Google Scholar

36. Ma, Guoliang, Yiming Wang, Ruikai Xia, Biwei Meng, Shengchao Yuan, Bing Zhou, and Chao Yuan, "Modulating microstructure and thermal properties of diamond/SiNx/GaN multilayer structure by diamond growth temperature," Diamond and Related Materials, Vol. 141, 110717, 2024.
doi:10.1016/j.diamond.2023.110717        Google Scholar

37. Shelah, S., "Advances in cardinal arithmetic," Finite and Infinite Combinatorics in Sets and Logic, 355-383, Springer, Dordrecht, The Netherlands, 1993.

38. Song, Yi, Jing Wang, Min Yan, and Min Qiu, "Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor," Journal of Optics, Vol. 13, No. 7, 075001, 2011.
doi:10.1088/2040-8978/13/7/075001        Google Scholar

39. Devi, K. S. Chaya, Basavaraj Angadi, and H. M. Mahesh, "Enhanced bandwidth characteristics of multiwall carbon nanotube microstrip patch antenna at X-band frequencie," International Journal of Science and Research (IJSR), Vol. 5, No. 11, 976-980, 2016.
doi:10.21275/4111601        Google Scholar

40. Slichter, C. P., Principles of Magnetic Resonance (Vol. 1), Springer Science & Business Media, 2013.
doi:10.1007/978-3-662-12784-1

41. Eyvazi, Kaveh and Mohammad Azim Karami, "SPAD timing jitter modeling using Fourier series," Optica Applicata, Vol. 53, No. 2, 239-248, 2023.
doi:10.37190/oa230206        Google Scholar

42. Della Rocca, Francescopaolo Mattioli, Tarek Al Abbas, Neale A. W. Dutton, and Robert K. Henderson, "A high dynamic range SPAD pixel for time of flight imaging," 2017 IEEE SENSORS, 1-3, Glasgow, UK, 2017.
doi:10.1109/icsens.2017.8234049

43. Iljazi, I., L. Arsov, M. Cundeva-Blajer, and A. Abazi, "Calibration of a virtual instrument for power quality monitoring," RE&PQJ, Vol. 10, No. 4, 2012.
doi:10.24084/repqj10.370        Google Scholar

44. Guedes, André, Rita Macedo, Gerardo Jaramillo, Susana Cardoso, Paulo P. Freitas, and David A. Horsley, "Hybrid GMR sensor detecting 950 pT/sqrt (Hz) at 1 Hz and room temperature," Sensors, Vol. 18, No. 3, 790, 2018.
doi:10.3390/s18030790        Google Scholar

45. Kaushik, Saurabh, Prabhakaran Selvanathan, and Gautam Vivek Soni, "Customized low-cost high-throughput amplifier for electro-fluidic detection of cell volume changes in point-of-care applications," PLoS ONE, Vol. 17, No. 4, e0267207, 2022.
doi:10.1371/journal.pone.0267207        Google Scholar

46. Yusuf, Siti Idzura, Suhaidi Shafie, Hasmayadi Abdul Majid, and Izhal Abdul Halin, "Differential input range driver for SAR ADC measurement setup," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 17, No. 2, 750-758, 2020.
doi:10.11591/ijeecs.v17.i2.pp750-758        Google Scholar

47. Ponomarev, D. B. and V. A. Zakharenko, "Silicon photodiode as the two-color detector," Journal of Physics: Conference Series, Vol. 643, No. 1, 012030, 2015.
doi:10.1088/1742-6596/643/1/012030

48. Rigo-Bonnin, Raúl and Francesca Canalias, "Estimation of the uncertainty of values assigned to calibration materials prepared in-house: An example for hydroxychloroquine calibrators in blood-hemolysate-based matrix," Clinical Biochemistry, Vol. 89, 70-76, 2021.
doi:10.1016/j.clinbiochem.2021.01.005        Google Scholar

49. Stano, Ernest, Piotr Kaczmarek, and Michal Kaczmarek, "Evaluation of the optional wideband accuracy of inductive current transformers in accordance with the Standard IEC 61869-1 Ed.2," Energies, Vol. 16, No. 20, 7206, 2023.
doi:10.3390/en16207206        Google Scholar

50. Zhao, M., R. Mammei, and D. Fujimoto, "QuSpin zero-field magnetometer characterization for the TUCAN experiment," Measurement Science and Technology, Vol. 36, No. 1, 015113, 2024.
doi:10.1088/1361-6501/ad89e6        Google Scholar