1. Degen, C. L., F. Reinhard, and P. Cappellaro, "Quantum sensing," Reviews of Modern Physics, Vol. 89, No. 3, 035002, 2017.
doi:10.1103/revmodphys.89.035002 Google Scholar
2. Zou, Zhixing, Jiangbin Gong, and Weitao Chen, "Enhancing quantum metrology by quantum resonance dynamics," Physical Review Letters, Vol. 134, No. 23, 230802, 2025.
doi:10.1103/lkrt-lvng Google Scholar
3. Deng, Xiaowei, Sai Li, Zi-Jie Chen, Zhongchu Ni, Yanyan Cai, Jiasheng Mai, Libo Zhang, Pan Zheng, Haifeng Yu, Chang-Ling Zou, et al., "Quantum-enhanced metrology with large Fock states," Nature Physics, Vol. 20, No. 12, 1874-1880, 2024.
doi:10.1038/s41567-024-02619-5 Google Scholar
4. Zuo, Xiaojie, Zhangguan Tang, Boyao Li, Xiaoyong Chen, and Jinghua Sun, "Quantum-empowered fiber sensing metrology," Photonics, Vol. 12, No. 8, 763, 2025.
doi:10.3390/photonics12080763
5. Fang, Hong-Hua, Xiao-Jie Wang, Xavier Marie, and Hong-Bo Sun, "Quantum sensing with optically accessible spin defects in van der Waals layered materials," Light: Science & Applications, Vol. 13, No. 1, 303, 2024.
doi:10.1038/s41377-024-01630-y Google Scholar
6. Pezzè, Luca and Augusto Smerzi, "Advances in multiparameter quantum sensing and metrology," arxiv preprint arxiv:2502.17396, 2025.
doi:10.48550/arXiv.2502.17396 Google Scholar
7. Khalid, Uman, Muhammad Shohibul Ulum, Moe Z. Win, and Hyundong Shin, "Integrated satellite-ground variational quantum sensing networks," IEEE Communications Magazine, Vol. 62, No. 10, 20-27, 2024.
doi:10.1109/mcom.005.2300844 Google Scholar
8. Fu, Ming, Zicai Wang, Donglai Zhang, and Hua Zhang, "Research on miniaturized ultra-high voltage and high power supply," 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), 1-4, Beijing, China, 2020.
doi:10.1109/ichve49031.2020.9279662
9. Harano, Masayuki, Hiroki Kobayashi, Chiaki Yamaura, Kenta Ikeda, Koki Nakazawa, and Shozo Yoda, "Development of high-precision efficiency measuring device for high power motor drive systems," Energy Efficiency in Motor Systems: Proceedings of the 11th International Conference EEMODS'19, 271-284, Springer, Cham, 2021.
doi:10.1007/978-3-030-69799-0_21
10. Joshi, Surabhi, Sherman Hung, and Srikar Vengallatore, "Design strategies for controlling damping in micromechanical and nanomechanical resonators," EPJ Techniques and Instrumentation, Vol. 1, No. 1, 5, 2014.
doi:10.1186/epjti5 Google Scholar
11. Zhang, Hong-Fei, Jian-Min Wang, Qi-Jie Tang, Yi Feng, Dong-Xu Yang, Jie Chen, Sheng-Zhao Lin, and Jian Wang, "Design of ultra-low noise and low temperature usable power system for high-precision detectors," IEEE Transactions on Nuclear Science, Vol. 63, No. 6, 2757-2763, 2016.
doi:10.1109/tns.2016.2616167 Google Scholar
12. Wang, Jian-Min, Hong-Fei Zhang, Sheng-Zhao Lin, Yi Feng, Dong-Xu Yang, and Jian Wang, "Design of ultra-low noise power system for high-precision detectors," 2016 IEEE-NPSS Real Time Conference (RT), 1-2, Padua, Italy, 2016.
doi:10.1109/rtc.2016.7543073
13. Khosro Pour, Naser, François Krummenacher, and Maher Kayal, "An ultra-low power energy-efficient microsystem for hydrogen gas sensing applications," Analog Integrated Circuits and Signal Processing, Vol. 77, No. 2, 155-168, 2013.
doi:10.1007/s10470-013-0138-3 Google Scholar
14. Zhang, Aixiang, Shizhan Song, Chuanyong Wang, Jian Zhang, Kun Wang, and Liwei Li, "Research of an integrated high-voltage energy metering device," 2017 36th Chinese Control Conference (CCC), 7567-7570, Dalian, China, July 2017.
doi:10.23919/chicc.2017.8028551
15. Wang, P., Z. Yang, and Y. T. Zhong, "All-digital power metering system for the high voltage power system," Automation of Electric Power Systems, Vol. 33, No. 6, 70-72, 2009. Google Scholar
16. Zhang, Fangqing, Jiang Guo, Fang Yuan, Yongjie Shi, Bingyuan Tan, and Dongfang Yao, "Research on intelligent verification system of high voltage electric energy metering device based on power cloud," Electronics, Vol. 12, No. 11, 2493, 2023.
doi:10.3390/electronics12112493 Google Scholar
17. Pan, Dawei, "Design of a kind of low-cost and high-precision power measuring device," Journal of Physics: Conference Series, Vol. 1622, No. 1, 012103, 2020.
doi:10.1088/1742-6596/1622/1/012103
18. Meng, Jing, Lei Song, Jingfen Bai, Wei Cen, Yongxian Duan, and Chunguang Lu, "Research on an integrated dual mode DC energy metering device and metering method," 2022 International Conference on Power Energy Systems and Applications (ICoPESA), 138-143, Singapore, 2022.
doi:10.1109/icopesa54515.2022.9754393
19. Zhao, Yong, Ya-Nan Zhang, Ri-Qing Lv, and Jin Li, "Electric field sensor based on photonic crystal cavity with liquid crystal infiltration," Journal of Lightwave Technology, Vol. 35, No. 16, 3440-3446, 2017.
doi:10.1109/jlt.2016.2576500 Google Scholar
20. White, Alexander D., Geun Ho Ahn, Richard Luhtaru, Joel Guo, Theodore J. Morin, Abhi Saxena, Lin Chang, Arka Majumdar, Kasper Van Gasse, John E. Bowers, and Jelena Vučković, "Unified laser stabilization and isolation on a silicon chip," Nature Photonics, Vol. 18, No. 12, 1305-1311, 2024.
doi:10.1038/s41566-024-01539-3 Google Scholar
21. An, Si-Han, Shi-Yu Ge, Wen-Tao Lu, Guo-Bin Chen, Sheng-Kai Xia, Ai-Qing Chen, Cheng-Kun Wang, Lin-Yan Yu, Zhi-Qiang Zhang, Yang Wang, et al., "Micron-resolved quantum precision measurement of magnetic field at the Tesla level," Chinese Physics B, Vol. 33, No. 12, 120305, 2024.
doi:10.1088/1674-1056/ad7e9b Google Scholar
22. Chattaraj, Tirthaprasad, "Numerical studies on correlations in dynamics and localization of two interacting particles in lattices," arxiv preprint arxiv:1809.09982, 2018.
doi:10.48550/arXiv.1809.09982 Google Scholar
23. Zhu, Yuchun, Elena Losero, Christophe Galland, and Valentin Goblot, "Simulation of ODMR spectra from nitrogen-vacancy ensembles in diamond for electric field sensing," arxiv preprint arxiv:2301.04106, 2023.
doi:10.48550/arXiv.2301.04106 Google Scholar
24. Taylor, J. M., P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, "High-sensitivity diamond magnetometer with nanoscale resolution," Nature Physics, Vol. 4, 810-816, 2008.
doi:10.1038/nphys1075
25. Biercuk, M. J., A. C. Doherty, and H. Uys, "Dynamical decoupling sequence construction as a filter-design problem," Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 44, No. 15, 154002, 2011.
doi:10.1088/0953-4075/44/15/154002 Google Scholar
26. Barry, John F., Jennifer M. Schloss, Erik Bauch, Matthew J. Turner, Connor A. Hart, Linh M. Pham, and Ronald L. Walsworth, "Sensitivity optimization for NV-diamond magnetometry," Reviews of Modern Physics, Vol. 92, No. 1, 015004, 2020.
doi:10.1103/revmodphys.92.015004 Google Scholar
27. Everaert, Katrijn, Saipriya Satyajit, Jiashen Tang, Zechuan Yin, Xiechen Zheng, Jner Tzern Oon, Connor A. Hart, John W. Blanchard, and Ronald L. Walsworth, "AC magnetometry in the strong drive regime with NV centers in diamond," arxiv preprint arxiv:2510.05471, 2025.
doi:10.48550/arXiv.2510.05471 Google Scholar
28. Pozar, David M., Microwave Engineering: Theory and Techniques, John Wiley & Sons, 2021.
29. Mizuno, Kosuke, Hitoshi Ishiwata, Yuta Masuyama, Takayuki Iwasaki, and Mutsuko Hatano, "Simultaneous wide-field imaging of phase and magnitude of AC magnetic signal using diamond quantum magnetometry," Scientific Reports, Vol. 10, No. 1, 11611, 2020.
doi:10.1038/s41598-020-68404-5 Google Scholar
30. Carr, H. Y. and E. M. Purcell, "Effects of diffusion on free precession in nuclear magnetic resonance experiments," Physical Review, Vol. 94, No. 3, 630, 1954.
doi:10.1103/physrev.94.630 Google Scholar
31. Kalman, R. E., "A new approach to linear filtering and prediction problems," Journal of Basic Engineering, Vol. 82, No. 1, 35-45, 1960.
doi:10.1115/1.3662552 Google Scholar
32. Maybeck, Peter S., Stochastic Models, Estimation, and Control, Vol. 3, Academic Press, 1982.
doi:10.1109/tsmc.1980.4308494
33. ISO Guide to the Expression of Uncertainty in Measurement, AENOR, Madrid, Spain, 1993.
34. Rubinas, O. R., V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, V. N. Sorokin, A. N. Smolyaninov, V. G. Vins, A. P. Yelisseyev, and A. V. Akimov, "Spin properties of NV centers in high-pressure, high-temperature grown diamond," Journal of Physics Communications, Vol. 2, No. 11, 115003, 2018.
doi:10.1088/2399-6528/aae992 Google Scholar
35. Acosta, V. M., E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, "Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond," Physical Review Letters, Vol. 104, No. 7, 070801, 2010.
doi:10.1103/physrevlett.104.070801 Google Scholar
36. Ma, Guoliang, Yiming Wang, Ruikai Xia, Biwei Meng, Shengchao Yuan, Bing Zhou, and Chao Yuan, "Modulating microstructure and thermal properties of diamond/SiNx/GaN multilayer structure by diamond growth temperature," Diamond and Related Materials, Vol. 141, 110717, 2024.
doi:10.1016/j.diamond.2023.110717 Google Scholar
37. Shelah, S., "Advances in cardinal arithmetic," Finite and Infinite Combinatorics in Sets and Logic, 355-383, Springer, Dordrecht, The Netherlands, 1993.
38. Song, Yi, Jing Wang, Min Yan, and Min Qiu, "Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor," Journal of Optics, Vol. 13, No. 7, 075001, 2011.
doi:10.1088/2040-8978/13/7/075001 Google Scholar
39. Devi, K. S. Chaya, Basavaraj Angadi, and H. M. Mahesh, "Enhanced bandwidth characteristics of multiwall carbon nanotube microstrip patch antenna at X-band frequencie," International Journal of Science and Research (IJSR), Vol. 5, No. 11, 976-980, 2016.
doi:10.21275/4111601 Google Scholar
40. Slichter, C. P., Principles of Magnetic Resonance (Vol. 1), Springer Science & Business Media, 2013.
doi:10.1007/978-3-662-12784-1
41. Eyvazi, Kaveh and Mohammad Azim Karami, "SPAD timing jitter modeling using Fourier series," Optica Applicata, Vol. 53, No. 2, 239-248, 2023.
doi:10.37190/oa230206 Google Scholar
42. Della Rocca, Francescopaolo Mattioli, Tarek Al Abbas, Neale A. W. Dutton, and Robert K. Henderson, "A high dynamic range SPAD pixel for time of flight imaging," 2017 IEEE SENSORS, 1-3, Glasgow, UK, 2017.
doi:10.1109/icsens.2017.8234049
43. Iljazi, I., L. Arsov, M. Cundeva-Blajer, and A. Abazi, "Calibration of a virtual instrument for power quality monitoring," RE&PQJ, Vol. 10, No. 4, 2012.
doi:10.24084/repqj10.370 Google Scholar
44. Guedes, André, Rita Macedo, Gerardo Jaramillo, Susana Cardoso, Paulo P. Freitas, and David A. Horsley, "Hybrid GMR sensor detecting 950 pT/sqrt (Hz) at 1 Hz and room temperature," Sensors, Vol. 18, No. 3, 790, 2018.
doi:10.3390/s18030790 Google Scholar
45. Kaushik, Saurabh, Prabhakaran Selvanathan, and Gautam Vivek Soni, "Customized low-cost high-throughput amplifier for electro-fluidic detection of cell volume changes in point-of-care applications," PLoS ONE, Vol. 17, No. 4, e0267207, 2022.
doi:10.1371/journal.pone.0267207 Google Scholar
46. Yusuf, Siti Idzura, Suhaidi Shafie, Hasmayadi Abdul Majid, and Izhal Abdul Halin, "Differential input range driver for SAR ADC measurement setup," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 17, No. 2, 750-758, 2020.
doi:10.11591/ijeecs.v17.i2.pp750-758 Google Scholar
47. Ponomarev, D. B. and V. A. Zakharenko, "Silicon photodiode as the two-color detector," Journal of Physics: Conference Series, Vol. 643, No. 1, 012030, 2015.
doi:10.1088/1742-6596/643/1/012030
48. Rigo-Bonnin, Raúl and Francesca Canalias, "Estimation of the uncertainty of values assigned to calibration materials prepared in-house: An example for hydroxychloroquine calibrators in blood-hemolysate-based matrix," Clinical Biochemistry, Vol. 89, 70-76, 2021.
doi:10.1016/j.clinbiochem.2021.01.005 Google Scholar
49. Stano, Ernest, Piotr Kaczmarek, and Michal Kaczmarek, "Evaluation of the optional wideband accuracy of inductive current transformers in accordance with the Standard IEC 61869-1 Ed.2," Energies, Vol. 16, No. 20, 7206, 2023.
doi:10.3390/en16207206 Google Scholar
50. Zhao, M., R. Mammei, and D. Fujimoto, "QuSpin zero-field magnetometer characterization for the TUCAN experiment," Measurement Science and Technology, Vol. 36, No. 1, 015113, 2024.
doi:10.1088/1361-6501/ad89e6 Google Scholar